
Introduction to FPGA
Design with Vivado
High-Level Synthesis

UG998 (v1.1) January 22, 2019

Introduction to FPGA Design with Vivado HLS 2
UG998 (v1.1) January 22, 2019 www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary

01/22/2019 Version 1.1

General Editorial updates.

DSP Block Updated information on DSP blocks.

Storage Elements Added information on UltraRAM.

07/02/2013 Version 1.0

Initial Xilinx release. N/A

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=2

Table of Contents
Revision History . 2

Chapter 1: Introduction
Overview . 5
Programming Model . 6
Guide Organization . 8

Chapter 2: What is an FPGA?
Overview . 11
FPGA Architecture . 11
FPGA Parallelism Versus Processor Architectures . 17

Chapter 3: Basic Concepts of Hardware Design
Overview . 23
Clock Frequency . 23
Latency and Pipelining. 27
Throughput. 28
Memory Architecture and Layout. 29

Chapter 4: Vivado High-Level Synthesis
Overview . 32
Operations . 33
Conditional Statements . 36
Loops. 37
Functions . 39
Dynamic Memory Allocation. 39
Pointers. 41

Chapter 5: Computation-Centric Algorithms
Overview . 43
Data Rate Optimization . 45
Introduction to FPGA Design with Vivado HLS www.xilinx.com 3
UG998 (v1.1) January 22, 2019

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=3

Chapter 6: Control-Centric Algorithms
Overview . 51
Expressing Control in C/C++ . 51
UDP Packet Processing . 56

Chapter 7: Software Verification and Vivado HLS
Overview . 61
Software Test Bench . 61
Code Coverage . 63
Uninitialized Variables. 64
Out-of-Bounds Memory Access . 65
Co-Simulation. 66
When C/C++ Verification Is Not Possible . 68

Chapter 8: Integration of Multiple Programs
Overview . 69
AXI. 69
Design Example: Application Running on a Zynq-7000 SoC . 73

Chapter 9: Verification of a Complete Application
Overview . 84
Standalone Compute Systems . 84
Processor-Based Systems . 87

Appendix A: Additional Resources and Legal Notices
Xilinx Resources . 90
Solution Centers. 90
Documentation Navigator and Design Hubs . 90
References . 91
Please Read: Important Legal Notices . 91
Introduction to FPGA Design with Vivado HLS www.xilinx.com 4
UG998 (v1.1) January 22, 2019

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=4

Chapter 1

Introduction

Overview
Software is the basis of all applications. Whether for entertainment, gaming,
communications, or medicine, many of the products people use today began as a software
model or prototype. Based on the performance and programmability constraints of the
system, the software engineer is tasked with determining the best implementation platform
to get a project to market. To accomplish this task, the software engineer is aided by both
programming techniques and a variety of hardware processing platforms.

On the programming side, previous decades yielded advances in object-oriented
programming for code reuse and parallel computing paradigms for boosting algorithm
performance. The advancements in programming languages, frameworks, and tools
allowed the software engineer to quickly prototype and test different approaches to solve
a particular problem. This need to quickly prototype a solution leads to two interesting
questions. The first question of how to analyze and quantify one algorithm against another
is extensively discussed in other works and is not the focus of this guide. The second
question of where to execute the algorithm is addressed in this guide in relation to field
programmable gate arrays (FPGAs).

Regarding where to run an algorithm, there is an increasing focus on parallelization and
concurrency. Although the interest in the parallel and concurrent execution of software
programs is not new, the renewed and increased interest is aided by certain trends in
processor and application-specific integrated circuit (ASIC) design. In the past, the software
engineer faced two choices for getting more performance out of a software algorithm: a
custom-integrated circuit or an FPGA.

The first and most expensive option is to turn the algorithm over to a hardware engineer for
a custom circuit implementation. The cost of this option is based on:

• Cost to fabricate the circuit

• Time to translate the algorithm into hardware

Despite advancements in fabrication process node technology that have yielded significant
improvements in power consumption, computational throughput, and logic density, the
cost to fabricate a custom-integrated circuit or ASIC for an application is still high. At each
processing node, the cost of fabrication continues to increase to the point where this
Introduction to FPGA Design with Vivado HLS 5
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=5

Chapter 1: Introduction
approach is only economically viable for applications that ship in the range of millions of
units.

The second option is to use an FPGA, which addresses the cost issues inherent in ASIC
fabrication. FPGAs allow the designer to create a custom circuit implementation of an
algorithm using an off-the-shelf component composed of basic programmable logic
elements. This platform offers the power consumption savings and performance benefits of
smaller fabrication nodes without incurring the cost and complexity of an ASIC
development effort. Similar to an ASIC, an algorithm implemented in an FPGA benefits from
the inherent parallel nature of a custom circuit.

Programming Model
The programming model of a hardware platform is one of the driving factors behind its
adoption. Software algorithms are typically captured in C/C++ or some other high-level
language, which abstracts the details of the computing platform. These languages allow for
quick iteration, incremental improvements, and code portability, which are critical to the
software engineer. For the past few decades, the fast execution of algorithms captured in
these languages have fueled the development of processors and software compilers.

Initially, improving the runtime of software was based on two central concepts: increasing
processor clock frequency and using specialized processors. For many years, it was common
practice to wait a year for the next generation processor as a way to speed up execution. At
every new higher clock frequency, the software program ran faster. Although this was
acceptable in some cases, for a large set of applications, incremental speedup through
processor clock frequency is not enough to deliver a viable product to market.

For this type of application, the specialized processor was created. Although there are many
kinds of specialized processors, such as the digital signal processor (DSP) and graphics
processing unit (GPU), all of these processors are capable of executing an algorithm written
in a high-level language, such as C, and have function-specific accelerators to improve the
execution of their target software applications.

With the recent paradigm shift in the design of standard and specialized processors, both
types of processors stopped relying on clock frequency increases for program speedup and
added more processing cores per chip. Multicore processors put program parallelization at
the forefront of techniques used to boost software performance. The software engineer
must now structure algorithms in a way that leads to efficient parallelization for
performance. The techniques required in algorithm design use the same base elements of
FPGA design. The main difference between an FPGA and a processor is the programming
model.
Introduction to FPGA Design with Vivado HLS 6
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=6

Chapter 1: Introduction
Historically, the programming model of an FPGA was centered on register-transfer level
(RTL) descriptions instead of C/C++. Although this model of design capture is completely
compatible with ASIC design, it is analogous to assembly language programming in
software engineering. Figure 1-1 shows a traditional FPGA design flow with RTL as the
design capture method, which illustrates how the programming model difference affects
implementation time and achievable performance for different computation platforms.

As shown in Figure 1-1, arriving at an initial working version of a software program occurs
relatively quickly in the project design cycle for both standard and specialized processors.
After the initial working version, additional development effort must be allotted to achieve
maximum performance on any implementation platform.

This figure also shows the time it takes to develop the same software application for an
FPGA platform. Both the initial and optimized versions of an application provide significant
performance when compared against the same stages for both standard and specialized
processors. RTL coding and an FPGA optimized application result in the highest
performance implementation.

However, the development time required to arrive at this implementation is beyond the
scope of a typical software development effort. Therefore, FPGAs were traditionally used
only for those applications requiring a performance profile that could not be achieved by
any other means, such as designs with multiple processors.

X-Ref Target - Figure 1-1

Figure 1-1: Design Time vs. Application Performance with RTL Design Entry

Performance

Time

x86

GPU

DSP

DSP

GPU

x86
FPGA with

RTL

Typical Design Time Limit
in a Software Project

FPGA with
RTL

Optimized versionFirst working version
X13466
Introduction to FPGA Design with Vivado HLS 7
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=7

Chapter 1: Introduction
Recent technological advances by Xilinx® remove the difference in programming models
between a processor and an FPGA. Just as there are compilers from C and other high-level
languages to different processor architectures, the Xilinx Vivado® High-Level Synthesis
(HLS) compiler provides the same functionality for C/C++ programs targeted to Xilinx
FPGAs. Figure 1-2 compares the result of the Vivado HLS compiler against other processor
solutions available to a software engineer.

Guide Organization
There is a significant difference between the performance of an FPGA and other processors
for the same C/C++ application. The following chapters in this guide describe the reasons
behind this dramatic performance difference and introduce how the Vivado HLS compiler
works.

Chapter 2: What is an FPGA?
Chapter 2, What is an FPGA? introduces the computational elements available in an FPGA
and how they compare to a processor. It covers topics such as FPGA memory hierarchy,
logic elements, and how these elements interrelate.

Chapter 3: Basic Concepts of Hardware Design
The difference between the hardware of a processor and an FPGA affects how a compiler for
each target works. Chapter 3, Basic Concepts of Hardware Design covers fundamental

X-Ref Target - Figure 1-2

Figure 1-2: Design Time vs. Application Performance with Vivado HLS Compiler

Performance

TimeOptimized versionFirst working version

Typical Design Time Limit
in a Software Projectx86

GPU

DSP

FPGA with HLS

DSP

GPU

x86

FPGA
with HLS

X13467
Introduction to FPGA Design with Vivado HLS 8
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=8

Chapter 1: Introduction
hardware concepts that apply to both FPGA and processor-based designs. Understanding
these concepts assists the designer in guiding the Vivado HLS compiler to create the best
processing architecture.

Chapter 4: Vivado High-Level Synthesis
Chapter 4, Vivado High-Level Synthesis introduces the Xilinx Vivado HLS compiler. Using
concepts from the preceding two chapters, this section describes how a C/C++ program is
compiled for an FPGA. This chapter focuses on how the compiler extracts parallelism,
organizes memory, and connects multiple programs within an FPGA.

Chapter 5: Computation-Centric Algorithms
Although there is extensive literature on algorithm analysis, the nuances of computation-
versus control-centric algorithms are largely dependent on the implementation platform.
Chapter 5, Computation-Centric Algorithms defines computation-centric algorithms for an
FPGA and provides examples and best practice recommendations.

Chapter 6: Control-Centric Algorithms
Control-centric algorithms can be implemented on both processors and FPGAs. The
implementation choice depends on the reaction time required of the algorithm. Chapter 6,
Control-Centric Algorithms provides an overview of control-centric algorithm
implementation options and provides a networking example for user datagram protocol
(UDP) packet processing.

Chapter 7: Software Verification and Vivado HLS
As with all compilers, the quality and correctness of the Vivado HLS compiler output
depends on the input software. Chapter 7, Software Verification and Vivado HLS reviews
recommended software quality techniques that apply to the Vivado HLS compiler. It
presents examples of typical coding errors and their effect on Vivado HLS compilation as
well as possible solutions to each problem. It also includes a section on what to do when
program behavior cannot be fully verified at the C level.

Chapter 8: Integration of Multiple Programs
Just as most processors run multiple programs to execute an application, an FPGA can also
build multiple programs or modules to execute a specific application. Chapter 8,
Integration of Multiple Programs describes how to connect multiple modules in an FPGA
and how to control these modules with a processor. It highlights the Xilinx Zynq®-7000
System on a Chip (SoC), which combines FPGA fabric with Arm® Cortex™-A9 processors.
Using both a consumer and producer example, this chapter also demonstrates complete
system development, integration, and design trade-offs.
Introduction to FPGA Design with Vivado HLS 9
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=9

Chapter 1: Introduction
Chapter 9: Verification of a Complete Application
With an FPGA, a complete application creates a hardware system. This system can have one
or more modules in the FPGA fabric as well as code executing on a processor. Chapter 9,
Verification of a Complete Application provides recommendations and best practices to
ensure correct execution of the target application.
Introduction to FPGA Design with Vivado HLS 10
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=10

Chapter 2

What is an FPGA?

Overview
An FPGA is a type of integrated circuit (IC) that can be programmed for different algorithms
after fabrication. Modern FPGA devices consist of up to two million logic cells that can be
configured to implement a variety of software algorithms. Although the traditional FPGA
design flow is more similar to a regular IC than a processor, an FPGA provides significant
cost advantages in comparison to an IC development effort and offers the same level of
performance in most cases. Another advantage of the FPGA when compared to the IC is its
ability to be dynamically reconfigured. This process, which is the same as loading a program
in a processor, can affect part or all of the resources available in the FPGA fabric.

When using the Vivado® HLS compiler, it is important to have a basic understanding of the
available resources in the FPGA fabric and how they interact to execute a target application.
This chapter presents fundamental information about FPGAs, which is required to guide
Vivado HLS to the best computational architecture for any algorithm.

FPGA Architecture
The basic structure of an FPGA is composed of the following elements:

• Look-up table (LUT): This element performs logic operations.

• Flip-Flop (FF): This register element stores the result of the LUT.

• Wires: These elements connect elements to one another.

• Input/Output (I/O) pads: These physically available ports get data in and out of the
FPGA.
Introduction to FPGA Design with Vivado HLS 11
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=11

Chapter 2: What is an FPGA?
The combination of these elements results in the basic FPGA architecture shown in
Figure 2-1. Although this structure is sufficient for the implementation of any algorithm,
the efficiency of the resulting implementation is limited in terms of computational
throughput, required resources, and achievable clock frequency.

X-Ref Target - Figure 2-1

Figure 2-1: Basic FPGA Architecture

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

X13468
Introduction to FPGA Design with Vivado HLS 12
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=12

Chapter 2: What is an FPGA?
Contemporary FPGA architectures incorporate the basic elements along with additional
computational and data storage blocks that increase the computational density and
efficiency of the device. These additional elements, which are discussed in the following
sections, are:

• Embedded memories for distributed data storage

• Phase-locked loops (PLLs) for driving the FPGA fabric at different clock rates

• High-speed serial transceivers

• Off-chip memory controllers

• Multiply-accumulate blocks

The combination of these elements provides the FPGA with the flexibility to implement any
software algorithm running on a processor and results in the contemporary FPGA
architecture shown in Figure 2-2.

X-Ref Target - Figure 2-2

Figure 2-2: Contemporary FPGA Architecture

Column of
dual-port RAM

Column of DSP48
(wide multiply-

accumulate) blocks

High speed serial
transceivers

Phase-locked loop (PLL)
clock generators

External
memory
controllers

X13468
Introduction to FPGA Design with Vivado HLS 13
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=13

Chapter 2: What is an FPGA?
LUT
The LUT is the basic building block of an FPGA and is capable of implementing any logic
function of N Boolean variables. Essentially, this element is a truth table in which different
combinations of the inputs implement different functions to yield output values. The limit
on the size of the truth table is N, where N represents the number of inputs to the LUT. For
the general N-input LUT, the number of memory locations accessed by the table is:

Equation 2-1

which allows the table to implement the following number of functions:

Equation 2-2

Note: A typical value for N in Xilinx FPGA devices is 6.

The hardware implementation of a LUT can be thought of as a collection of memory cells
connected to a set of multiplexers. The inputs to the LUT act as selector bits on the
multiplexer to select the result at a given point in time. It is important to keep this
representation in mind, because a LUT can be used as both a function compute engine and
a data storage element. Figure 2-3 shows this functional representation of the LUT.

X-Ref Target - Figure 2-3

Figure 2-3: Functional Representation of a LUT as Collection of Memory Cells

2N

2NN

a

b

c

d

x1 x0

y

X13469
Introduction to FPGA Design with Vivado HLS 14
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=14

Chapter 2: What is an FPGA?
Flip-Flop
The flip-flop is the basic storage unit within the FPGA fabric. This element is always paired
with a LUT to assist in logic pipelining and data storage. The basic structure of a flip-flop
includes a data input, clock input, clock enable, reset, and data output. During normal
operation, any value at the data input port is latched and passed to the output on every
pulse of the clock. The purpose of the clock enable pin is to allow the flip-flop to hold a
specific value for more than one clock pulse. New data inputs are only latched and passed
to the data output port when both clock and clock enable are equal to one. Figure 2-4
shows the structure of a flip-flop.

X-Ref Target - Figure 2-4

Figure 2-4: Structure of a Flip-Flop

FF

d_in d_out

clk_en

clk

reset

set

X13470
Introduction to FPGA Design with Vivado HLS 15
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=15

Chapter 2: What is an FPGA?
DSP Block
The most complex computational block available in a Xilinx FPGA is the DSP block, which is
shown in Figure 2-5. The DSP block is an arithmetic logic unit (ALU) embedded into the
fabric of the FPGA, which is composed of a chain of three different blocks. The
computational chain in the DSP is composed of an add/subtract unit connected to a
multiplier connected to a final add/subtract/accumulate engine. This chain allows a single
DSP unit to implement functions of the form:

Equation 2-3

or

Equation 2-4

Storage Elements
The FPGA device includes embedded memory elements that can be used as random-access
memory (RAM), read-only memory (ROM), or shift registers. These elements are block
RAMs (BRAMs), UltraRAM blocks (URAMS), LUTs, and shift registers (SRLs).

The BRAM is a dual-port RAM module instantiated into the FPGA fabric to provide on-chip
storage for a relatively large set of data. The two types of BRAM memories available in a
device can hold either 18 k or 36 k bits. The number of these memories available is device
specific. The dual-port nature of these memories allows for parallel, same-clock-cycle
access to different locations.

In terms of how arrays are represented in C/C++ code, BRAMs can implement either a RAM
or a ROM. The only difference is when the data is written to the storage element. In a RAM

X-Ref Target - Figure 2-5

Figure 2-5: Structure of a DSP Block

p a b d+()× c+=

p a b d+()×=+

48-Bit Accumulator/Logic Unit

Pattern Detector

25 x 18
Multiplier

Pre-adder

B

P

+ / –

X

=

+

–A

D

C

X13497
Introduction to FPGA Design with Vivado HLS 16
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=16

Chapter 2: What is an FPGA?
configuration, the data can be read and written at any time during the runtime of the
circuit. In contrast, in a ROM configuration, data can only be read during the runtime of the
circuit. The data of the ROM is written as part of the FPGA configuration and cannot be
modified in any way.

The UltraRAM blocks are dual-port, synchronous 288 Kb RAM with a fixed configuration of
4,096 bits deep and 72 bits wide. They are available on UltraScale+ Devices and provide 8
times more storage capacity than the BRAM.

As previously discussed, the LUT is a small memory in which the contents of a truth table are
written during device configuration. Due to the flexibility of the LUT structure in Xilinx
FPGAs, these blocks can be used as 64-bit memories and are commonly referred to as
distributed memories. This is the fastest kind of memory available on the FPGA device,
because it can be instantiated in any part of the fabric that improves the performance of the
implemented circuit.

The shift register is a chain of registers connected to each other. The purpose of this
structure is to provide data reuse along a computational path, such as with a filter. For
example, a basic filter is composed of a chain of multipliers that multiply a data sample
against a set of coefficients. By using a shift register to store the input data, a built-in data
transport structure moves the data sample to the next multiplier in the chain on every clock
cycle. Figure 2-6 shows an example shift register.

FPGA Parallelism Versus Processor Architectures
When compared with processor architectures, the structures that comprise the FPGA fabric
enable a high degree of parallelism in application execution. The custom processing
architecture generated by the Vivado HLS compiler for a software program presents a
different execution paradigm, which must be taken into account when deciding to port an
application from a processor to an FPGA. To examine the benefits of the FPGA execution
paradigm, this section provides a brief review of processor program execution.

X-Ref Target - Figure 2-6

Figure 2-6: Structure of an Addressable Shift Register

D

CE

A[4:0] 00000 11111

Q

00110

CE
QD

CE
QD

CE
QD

CE
QD

CE
QD

CE
QD

CE
QD

CE
QD

CE
QD

CE
QD

CE
QD

CE
QD

CE
QD

CE
QD

CE
QD

CE
QD

X13471
Introduction to FPGA Design with Vivado HLS 17
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=17

Chapter 2: What is an FPGA?
Program Execution on a Processor
A processor, regardless of its type, executes a program as a sequence of instructions that
translate into useful computations for the software application. This sequence of
instructions is generated by processor compiler tools, such as the GNU Compiler Collection
(GCC), which transform an algorithm expressed in C/C++ into assembly language
constructs that are native to the processor. The job of a processor compiler is to take a C
function of the form:

Equation 2-5

and transform it into assembly code as follows:

The assembly code in Figure 2-7 defines the addition operation to compute the value of z
in terms of the internal registers of a processor. The code states that the input values for the
computation are stored in registers R1 and R2, and the result of the computation is stored
in register R3. This code is simple, and it does not express all the instructions needed to
compute the value of z. This code only handles the computation after the data has arrived
at the processor. Therefore, the compiler must create additional assembly language
instructions to load the registers of the processor with data from a central memory and to
write back the result to memory. The complete assembly program to compute the value of
z is as follows:

The code in Figure 2-8 shows that even a simple operation, such as the addition of two
values, results in multiple assembly instructions. The computational latency of each
instruction is not equal across instruction types. For example, depending on the location of
a and b, the LD operations take a different number of clock cycles to complete. If the values
are in the processor cache, these load operations complete within a few tens of clock cycles.
If the values are in the main, double data rate (DDR) memory, the operations take between
hundreds and thousands of clock cycles to complete. If the values are in a hard drive, the
load operations take even longer to complete. This is why software engineers with cache hit
traces spend so much time restructuring their algorithms to increase the spatial locality of
data in memory to increase the cache hit rate and decrease the processor time spent per
instruction.

X-Ref Target - Figure 2-7

Figure 2-7: Computation Expressed Assembly Code

X-Ref Target - Figure 2-8

Figure 2-8: Complete Assembly Program to Compute Z

z a b;+=

ADD $R1,$R2,$R3

LD a, $R1
LD b, $R2
ADD $R1,$R2,$R3
ST $R3, c
Introduction to FPGA Design with Vivado HLS 18
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=18

Chapter 2: What is an FPGA?
IMPORTANT: The level of effort required by the software engineer in restructuring algorithms to better
fit the available processor cache is not required when the same operation is implemented in an FPGA.

Program Execution on an FPGA
The FPGA is an inherently parallel processing fabric capable of implementing any logical
and arithmetic function that can run on a processor. The main difference is that the Vivado
HLS compiler, which is used to transform software descriptions into RTL, is not hindered by
the restrictions of a cache and a unified memory space.

The computation of z is compiled by Vivado HLS into several LUTs required to achieve the
size of the output operand. For example, assume that in the original software program the
variable a, b, and z are defined with the short data type. This type, which defines a 16-bit
data container, gets implemented as 16 LUTs by Vivado HLS.

Note: As a general rule, 1 LUT is equivalent to 1 bit of computation.

The LUTs used for the computation of z are exclusive to this operation only. Unlike a
processor, where all computations share the same ALU, an FPGA implementation
instantiates independent sets of LUTs for each computation in the software algorithm.

In addition to assigning unique LUT resources per computation, the FPGA differs from a
processor in both memory architecture and the cost of memory accesses. In an FPGA
implementation, the Vivado HLS compiler arranges memories into multiple storage banks
as close as possible to the point of use in the operation. This results in an instantaneous
memory bandwidth, which far exceeds the capabilities of a processor. For example, the
Xilinx Kintex®-7 410T device has a total of 1,590 18 k-bit BRAMs available. In terms of
memory bandwidth, the memory layout of this device provides the software engineer with
the capacity of 0.5M-bits per second at the register level and 23T-bits per second at the
BRAM level.

With regard to computational throughput and memory bandwidth, the Vivado HLS
compiler exercises the capabilities of the FPGA fabric through the processes of scheduling,
pipelining, and dataflow. Although transparent to the user, these processes are integral
stages of the software compilation process that extract the best possible circuit-level
implementation of the software application.

Scheduling

Scheduling is the process of identifying the data and control dependencies between
different operations to determine when each will execute. In traditional FPGA design, this is
a manual process also referred to as parallelizing the software algorithm for a hardware
implementation.

Vivado HLS analyzes dependencies between adjacent operations as well as across time. This
allows the compiler to group operations to execute in the same clock cycle and to set up the
Introduction to FPGA Design with Vivado HLS 19
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=19

Chapter 2: What is an FPGA?
hardware to allow the overlap of function calls. The overlap of function call executions
removes the processor restriction that requires the current function call to fully complete
before the next function call to the same set of operations can begin. This process is called
pipelining and is covered in detail in the following section and remaining chapters.

Pipelining

Pipelining is a digital design technique that allows the designer to avoid data dependencies
and increase the level of parallelism in an algorithm hardware implementation. The data
dependence in the original software implementation is preserved for functional
equivalence, but the required circuit is divided into a chain of independent stages. All
stages in the chain run in parallel on the same clock cycle. The only difference is the source
of data for each stage. Each stage in the computation receives its data values from the result
computed by the preceding stage during the previous clock cycle. For example, to compute
the following function the Vivado HLS compiler instantiates one multiplier and two adder
blocks:

Equation 2-6

Figure 2-9 shows this compute structure and the effects of pipelining. It shows two
implementations of the example function. The top implementation is the datapath required
to compute the result y without pipelining. This implementation behaves similarly to the
corresponding C/C++ function in that all input values must be known at the start of the
computation, and only one result y can be computed at a time. The bottom implementation
shows the pipelined version of the same circuit.

y a x×() b c+ +=
Introduction to FPGA Design with Vivado HLS 20
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=20

Chapter 2: What is an FPGA?
The boxes in the datapath in Figure 2-9 represent registers that are implemented by
flip-flop blocks in the FPGA fabric. Each box can be counted as a single clock cycle.
Therefore, in the pipelined version, the computation of each result y takes three clock
cycles. By adding the register, each block is isolated into separate compute sections in time.
This means that the section with the multiplier and the section with the two adders can run
in parallel and reduce the overall computational latency of the function. By running both
sections of the datapath in parallel, the block is essentially computing the values y and y’ in
parallel, where y’ is the result of the next execution of Equation 2-6. The initial computation
of y, which is also referred to as the pipeline fill time, takes three clock cycles. After this
initial computation, a new value of y is available at the output on every clock cycle, because
the computation pipeline contains overlapped data sets for the current and subsequent y
computations.

Figure 2-10 shows a pipelined architecture in which raw data (dark gray), semi-computed
data (white), and final data (light gray) exist simultaneously, and each stage result is
captured in its own set of registers. Thus, although the latency for such computation is in
multiple cycles, with every cycle a new result can be produced.

X-Ref Target - Figure 2-9

Figure 2-9: FPGA Implementation of a Compute Function

X13472

y

a

x

b

c

*

+

+

y

a

x

b

c

*

+

+

Pipeline
transformation
Introduction to FPGA Design with Vivado HLS 21
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=21

Chapter 2: What is an FPGA?
Dataflow

Dataflow is another digital design technique, which is similar in concept to pipelining. The
goal of dataflow is to express parallelism at a coarse-grain level. In terms of software
execution, this transformation applies to parallel execution of functions within a single
program.

Vivado HLS extracts this level of parallelism by evaluating the interactions between different
functions of a program based on their inputs and outputs. The simplest case of parallelism
is when functions work on different data sets and do not communicate with each other. In
this case, Vivado HLS allocates FPGA logic resources for each function and then runs the
blocks in independently. The more complex case, which is typical in software programs, is
when one function provides results for another function. This case is referred to as the
consumer-producer scenario.

Vivado HLS supports two use models for the consumer-producer scenario. In the first use
model, the producer creates a complete data set before the consumer can start its
operation. Parallelism is achieved by instantiating a pair of BRAM memories arranged as
memory banks ping and pong. Each function can access only one memory bank, ping or
pong, for the duration of a function call. When a new function call begins, the
HLS-generated circuit switches the memory connections for both the producer and the
consumer. This approach guarantees functional correctness but limits the level of
achievable parallelism to across function calls.

In the second use model, the consumer can start working with partial results from the
producer, and the achievable level of parallelism is extended to include execution within a
function call. The Vivado HLS-generated modules for both functions are connected through
the use of a first in, first out (FIFO) memory circuit. This memory circuit, which acts as a

X-Ref Target - Figure 2-10

Figure 2-10: Pipelined Architecture

a(i)
x(i)
b(i)
c(i)

a(i-1)*x(i-1)
b(i-1)
c(i-1)

a(i-2)*x(i-2)+b(i-2)
+c(i-2)

y

a

x

b

c

X13498

*

+

+

Introduction to FPGA Design with Vivado HLS 22
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=22

Chapter 2: What is an FPGA?
queue in software programming, provides data-level synchronization between the modules.
At any point during a function call, both hardware modules are executing their
programming. The only exception is that the consumer module waits for some data to be
available from the producer before beginning computation. In Vivado HLS terminology, the
wait time of the consumer module is referred to as the interval or initiation interval (II).
Introduction to FPGA Design with Vivado HLS 23
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=23

Chapter 3

Basic Concepts of Hardware Design

Overview
One of the key differences between a processor and an FPGA is whether the processing
architecture is fixed. This difference directly affects how a compiler for each target works.
With a processor, the computation architecture is fixed, and the job of the compiler is to
determine how to best fit the software application in the available processing structures.
Performance is a function of how well the application maps to the capabilities of the
processor and the number of processor instructions needed for correct execution.

In contrast, an FPGA is similar to a blank slate with a box of building blocks. The job of the
Vivado® HLS compiler is to create a processing architecture from the box of building blocks
that best fits the software program. The process of guiding the Vivado HLS compiler to
create the best processing architecture requires fundamental knowledge about hardware
design concepts.

This chapter covers general design concepts that apply to both FPGA and processor-based
designs and explains how these concepts are related. This chapter does not cover detailed
aspects of FPGA design. As with processor compilers, the Vivado HLS compiler handles the
low-level details of the algorithm implementation into the FPGA logic fabric.

Clock Frequency
The processor clock frequency is one of the first items to consider when determining the
execution platform of a specific algorithm. A commonly used guideline is that a high clock
frequency translates into a higher performance execution rate of an algorithm. Although
this might be a good first order rule for choosing between processors, it is actually
misleading and can lead the designer to make the wrong choice when selecting between a
processor and an FPGA.
Introduction to FPGA Design with Vivado HLS 23
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=24

Chapter 3: Basic Concepts of Hardware Design
The reason this general guideline is misleading is related to the nominal difference in clock
frequency between a processor and an FPGA. For example, when comparing the clock
frequencies of processors and FPGAs, it is not uncommon to face the comparison shown in
Table 3-1.

A simple analysis of the values in Table 3-1 can mislead a designer to assume the processor
has four times the performance of the FPGA. This simple analysis incorrectly assumes that
the only difference between the platforms is clock frequency. However, the platforms have
additional differences.

The first major difference between a processor and an FPGA is how a software program is
executed. A processor is able to execute any program on a common hardware platform. This
common platform comprises the core of the processor and defines a fixed architecture onto
which all software must be fitted. The compiler, which has a built-in understanding of the
processor architecture, compiles the user software into a set of instructions. The resulting
set of instructions is always executed in the same fundamental order, as shown in
Figure 3-1.

Regardless of the type of processor, standard versus specialized, the execution of an
instruction is always the same. Each instruction of the user application must go through the
following stages:

1. Instruction fetch (IF)

2. Instruction decode (ID)

3. Execute (EXE)

4. Memory operations (MEM)

5. Write back (WB)

Table 3-1: Maximum Clock Frequency Examples

Processor FPGA

2 GHz 500 MHz

X-Ref Target - Figure 3-1

Figure 3-1: Processor Instruction Execution Stages

IF ID EXE MEM WB

0 1 2 3 4 Time
X13473
Introduction to FPGA Design with Vivado HLS 24
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=25

Chapter 3: Basic Concepts of Hardware Design
The purpose of each stage is summarized in Table 3-2.

Most modern processors include multiple copies of the instruction execution path and are
capable of running instructions with some degree of overlap. Because instructions in a
processor usually depend on each other, the overlap between copies of the instruction
execution hardware is not perfect. In the best of cases, only the overhead stages introduced
by using a processor can be overlapped. The EXE stages, which are responsible for
application computation, execute sequentially. The reasons for this sequential execution are
related to limited resources in the EXE stage and dependence between instructions.

Figure 3-2 shows a processor with multiple instructions executing in a semi-parallel order.
This is the best case for a processor in which all instructions are executing as quickly as
possible. Even in this best case, the processor is limited to only one EXE stage per clock
cycle. This means that the user application moves forward by one operation per clock cycle.
Even if the compiler determined that all five EXE stages could execute in parallel, the
structure of the process would prevent it.

Table 3-2: Instruction Processing Stages

Stage Description

IF Get the instruction from program memory.

ID Decode the instruction to determine the operation and the operators.

EXE Execute the instruction on the available hardware. In a standard processor, this means the
arithmetic logic unit (ALU) or floating point unit (FPU). A specialized processor adds on
fixed function accelerators to the capabilities of the standard processor at this stage of
instruction processing.

MEM Fetch data for the next instruction using memory operations.

WB Write the results of the instruction either to local registers or global memory.

X-Ref Target - Figure 3-2

Figure 3-2: Processor with Multiple Instruction Execution Units

0 1 2 3 4 Time

IF ID EXE MEM WB

IF ID EXE MEM WB

IF ID EXE MEM WB

IF ID EXE MEM WB

IF ID EXE MEM WB

5 6 7 8
X13474
Introduction to FPGA Design with Vivado HLS 25
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=26

Chapter 3: Basic Concepts of Hardware Design
An FPGA does not execute all software on a common computation platform. It executes a
single program at a time on a custom circuit for that program. Therefore, changing the user
application changes the circuit in the FPGA. Unlike Figure 3-1, the EXE stage appears as
shown in Figure 3-3 when processing in an FPGA. The presence of the MEM stage is
application dependent.

Given this flexibility, the Vivado HLS compiler does not need to account for overhead stages
in the platform and can find ways of maximizing instruction parallelism. Working with the
same assumptions as in Figure 3-2, the execution profile of the same software in an FPGA is
shown in Figure 3-4.

Based on the comparison of Figure 3-2 and Figure 3-4, the FPGA has a nominal
performance advantage of 9x compared to the processor. Actual numbers are always
application specific, but FPGAs generally demonstrate at least 10x the performance of a
processor for computationally intensive applications.

Another issue hidden by only focusing on the clock frequency is the power consumption of
a software program. The approximation to power consumption is given by:

Equation 3-1

As shown in Equation 3-1, the relationship between power consumption and clock
frequency is supported by empirical data, which shows higher power usage in a processor
than an FPGA for the same computational workload. By creating a custom circuit per
software program, an FPGA is able to run at a lower clock frequency with maximum
parallelism between operations and without the instruction interpretation overhead found
in a processor.

X-Ref Target - Figure 3-3

Figure 3-3: FPGA Instruction Execution Stages

X-Ref Target - Figure 3-4

Figure 3-4: FPGA with Multiple Instruction Execution Units

EXE

0 1 2 3 4 Time
X13475

EXE

0 1 2 3 4 Time

EXE

EXE

EXE

EXE

X13476

P 1
2
--cFV2

=

Introduction to FPGA Design with Vivado HLS 26
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=27

Chapter 3: Basic Concepts of Hardware Design
RECOMMENDED: When selecting between a processor and an FPGA, it is recommended that
application requirements and computational workload are analyzed based on throughput and latency
instead of a maximum clock frequency.

Latency and Pipelining
Latency is the number of clock cycles it takes to complete an instruction or set of
instructions to generate an application result value. Using the basic processor architecture
shown in Figure 3-1, the latency of an instruction is five clock cycles. If the application has
a total of five instructions, the overall latency for this simple model is 25 clock cycles. That
is, the result of the application is not available until 25 clock cycles expire.

Application latency is a key performance metric in both FPGAs and processors. In both
cases, the problem of latency is resolved through the use of pipelining. In a processor,
pipelining means that the next instruction can be launched into execution before the
current instruction is complete. This allows the overlap of overhead stages required in
instruction set processing. The best case result of pipelining for a processor is shown in
Figure 3-2. By overlapping the execution of instructions, the processor achieves a latency of
nine clock cycles for the five instruction application.

In an FPGA, the overhead cycles associated with instruction processing are not present. The
latency is measured by how many clock cycles it takes to run the EXE stage of the original
processor instruction. For the case in Figure 3-3, the latency is one clock cycle. Parallelism
also plays an important role in latency. For the full five instruction application, the FPGA
latency is also one clock cycle, as shown in Figure 3-4. With the one clock cycle latency of
the FPGA, it might not be clear why pipelining is advantageous. However, the reason for
pipelining in an FPGA is the same as in a processor, that is, to improve application
performance.

As previously explained, the FPGA is a blank slate with building blocks that must be
connected to implement an application. The Vivado HLS compiler can connect the blocks
directly or through registers. Figure 3-5 shows an implementation of the EXE stage in
Figure 3-3 that is implemented using five building blocks.

X-Ref Target - Figure 3-5

Figure 3-5: FPGA Implementation without Pipelining

A B C D E

R
egister

Source

R
egister

Sink

Time is Measured from Source to Sink Register

X13477
Introduction to FPGA Design with Vivado HLS 27
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=28

Chapter 3: Basic Concepts of Hardware Design
Operation timing in an FPGA is the length of time it takes a signal to travel from a source
register to a sink register. Assuming each building block in Figure 3-5 requires 2 ns to
execute, the current design requires 10 ns to implement the functionality. The latency is still
one clock cycle, but the clock frequency is limited to 100 MHz. The 100 MHz frequency limit
is derived from the definition of clock frequency in an FPGA. For the case of an FPGA circuit,
the clock frequency is defined as the longest signal travel time between source and sink
registers.

Pipelining in an FPGA is the process of inserting more registers to break up large
computation blocks into smaller segments. This partitioning of the computation increases
the latency in absolute number of clock cycles but increases performance by allowing the
custom circuit to run at a higher clock frequency.

Figure 3-6 shows the implementation of the processing architecture in Figure 3-5 after
complete pipelining. Complete pipelining means that a register is inserted between each
building block in the FPGA circuit. The addition of registers reduces the timing requirement
of the circuit from 10 ns to 2 ns, which results in a maximum clock frequency of 500 MHz. In
addition, by separating the computation into separate register-bounded regions, each
block is allowed to always be busy, which positively impacts the application throughput.

One issue with pipelining is the latency of the circuit. The original circuit of Figure 3-5 has
a latency of one clock cycle at the expense of a low clock frequency. In contrast, the circuit
of Figure 3-6 has a latency of five clock cycles at a higher clock frequency.

IMPORTANT: The latency caused by pipelining is one of the trade-offs to consider during FPGA design.

Throughput
Throughput is another metric used to determine overall performance of an implementation.
It is the number of clock cycles it takes for the processing logic to accept the next input data
sample. With this value, it is important to remember that the clock frequency of the circuit
changes the meaning of the throughput number.

X-Ref Target - Figure 3-6

Figure 3-6: FPGA Implementation with Pipelining

A B

R
egister

Sink/
Source

C

R
egister

Sink/
Source

D

R
egister

Sink/
Source

E

R
egister

Sink/
Source

R
egister

Sink

Time is Measured from
Source to Sink Register

R
egister

Source

X13478
Introduction to FPGA Design with Vivado HLS 28
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=29

Chapter 3: Basic Concepts of Hardware Design
For example, both Figure 3-5 and Figure 3-6 show implementations that require one clock
cycle between input data samples. The key difference is that the implementation in
Figure 3-5 requires 10 ns between input samples, whereas the circuit in Figure 3-6 only
requires 2 ns between input data samples. After the time base is known, it is clear that the
second implementation has higher performance, because it can accept a higher input data
rate.

Note: The definition of throughput described in this section can also be used when analyzing
applications executing on a processor.

Memory Architecture and Layout
The memory architecture of the selected implementation platform is one of the physical
elements that can affect the performance of a software application. Memory architecture
determines the upper bound on achievable performance. At some performance point, all
applications on either a processor or an FPGA become memory bound regardless of the
type and number of available computational resources. One strategy in FPGA design is
understanding where the memory bound is and how it can be affected by data layout and
memory organization.

In a processor-based system, the software engineer must fit the application on essentially
the same memory architecture regardless of the specific type of processor. This
commonality simplifies the process of application migration at the expense of performance.
Common memory architecture familiar to software engineers consists of memories that are
slow, medium, or fast based on the number of clock cycles it takes to get the data to the
processor. These memory classifications are defined in Table 3-3.

The memory architecture shown in this table assumes that the user is presented with a
single large memory space. Within this memory space, the user allocates and deallocates
regions to store program data. The physical location of data and how it moves between the
different levels in the hierarchy is handled by the computation platform and is transparent
to the user. In this kind of system, the only way to boost performance is to reuse data in the
cache as much as possible.

Table 3-3: Memory Type Definitions

Memory Type Definition

Slow Mass storage devices, such as hard drives

Medium DDR memories

Fast On-chip cache memories of different sizes depending on the specific processor
Introduction to FPGA Design with Vivado HLS 29
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=30

Chapter 3: Basic Concepts of Hardware Design
To achieve this goal, the software engineer must spend large amounts of time looking at
cache traces, restructuring the software algorithm to increase data locality, and managing
memory allocation to minimize the instantaneous memory footprint of the program.
Although all of these techniques are portable across processors, the results are not. A
software program must be tuned for each processor it runs on to maximize performance.

With experience in working with processor-based memory, the first difference a software
engineer encounters when working with memory in an FPGA is the lack of fixed on-chip
memory architecture. FPGA-based systems can be attached to slow and medium memories
but exhibit the greatest degree of differentiation in terms of available fast memories. That
is, instead of restructuring the software to best use an existing cache, the Vivado HLS
compiler builds a fast memory architecture to best fit the data layout in the algorithm. The
resulting FPGA implementation can have one or more internal banks of different sizes that
can be accessed independently from one another.

The code examples in Figure 3-7 show best practice recommendations for addressing the
memory requirements of a program.

The FPGA code might surprise a seasoned software engineer with its lack of dynamic
memory allocation. The use of dynamic memory allocation has long been part of the best
practice guidelines for processor-based systems due to the underlying fixed memory
architecture.

In contrast to this approach, the Vivado HLS compiler builds a memory architecture that is
tailored to the application. This tailored memory architecture is shaped both by the size of
the memory blocks in the program as well as by how the data is used throughout program
execution. Current state-of-the-art compilers for FPGAs, such as Vivado HLS, require that
the memory requirements of an application are fully analyzable at compile time.

The benefit of static memory allocation is that Vivado HLS can implement the memory for
array A in different ways. Depending on the computation in the algorithm, the Vivado HLS
compiler can implement the memory for A as registers, shift registers, FIFOs, or BRAMs.

Note: Despite the restriction on dynamic memory allocation, pointers are fully supported by the
Vivado HLS compiler. For details on pointer support, see Pointers in Chapter 4.

X-Ref Target - Figure 3-7

Figure 3-7: Processor and FPGA Code Examples

Processor Code FPGA Code

void foo(......)
{
 int *A = (int *)malloc(10 * sizeof(int));

 free(A);
}

void foo(......)
{
 int A[10];

}

Introduction to FPGA Design with Vivado HLS 30
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=31

Chapter 3: Basic Concepts of Hardware Design
Registers
A register implementation of a memory is the fastest possible memory structure. In this
implementation style, each entry of A becomes an independent entity. Each independent
entity is embedded into the computation where it is used without the need to address logic
or additional delays.

Shift Register
In processor programming terms, a shift register can be thought of as a special case of a
queue. In this implementation, each element of A is used multiple times in different parts of
the computation. The key characteristic of a shift register is that every element of A can be
accessed on every clock cycle. In addition, moving all data items to the next adjacent
storage container requires only one clock cycle.

FIFO
A FIFO can be thought of as a queue with a single point of entry and a single point of exit.
This kind of structure is typically used to transmit data between program loops or functions.
There is no addressing logic involved, and the implementation details are completely
handled by the Vivado HLS compiler.

BRAM
A BRAM is a random-access memory that is embedded into the FPGA fabric. A Xilinx FPGA
device includes many of these embedded memories. The exact number of memories is
device specific. In processor programming terms, this kind of memory can be thought of as
a cache with the following limitations:

• Does not implement cache coherency, collision, and cache miss tracking logic typically
found in a processor cache.

• Holds its values only as long as the device is powered on.

• Supports parallel same cycle access to two different memory locations.
Introduction to FPGA Design with Vivado HLS 31
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=32

Chapter 4

Vivado High-Level Synthesis

Overview
The Xilinx® Vivado® High-Level Synthesis (HLS) compiler provides a programming
environment similar to those available for application development on both standard and
specialized processors. Vivado HLS shares key technology with processor compilers for the
interpretation, analysis, and optimization of C/C++ programs. The main difference is in the
execution target of the application.

By targeting an FPGA as the execution fabric, Vivado HLS enables a software engineer to
optimize code for throughout, power, and latency without the need to address the
performance bottleneck of a single memory space and limited computational resources.
This allows the implementation of computationally intensive software algorithms into
actual products, not just functionality demonstrators. This chapter introduces how the
Vivado HLS compiler works and how it differs from a traditional software compiler.

Application code targeting the Vivado HLS compiler uses the same categories as any
processor compiler. Vivado HLS analyzes all programs in terms of:

• Operations

• Conditional statements

• Loops

• Functions

IMPORTANT: Vivado HLS can compile almost any C/C++ program. The only coding limitation for
Vivado HLS is with dynamic language constructs typical in processors with a single memory space.
When using Vivado HLS, the main dynamic constructs to consider are memory allocation and pointers
as described in this chapter.
Introduction to FPGA Design with Vivado HLS 32
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=33

Chapter 4: Vivado High-Level Synthesis
Operations
Operations refer to both the arithmetic and logical components of an application that are
involved in computing a result value. This definition intentionally excludes comparison
statements, because these are handled in Conditional Statements.

When working with operations, the main difference between Vivado HLS and other
compilers is in the restrictions placed on the designer. With a processor compiler, the fixed
processing architecture means that the user can only affect performance by limiting
operation dependency and manipulating memory layout to maximize cache performance.
In contrast, Vivado HLS is not constrained by a fixed processing platform and builds an
algorithm-specific platform based on user input. This allows an HLS designer to affect
application performance in terms of throughput, latency, and power as shown in the
examples in this section.

Figure 4-1 shows a set of three operations involved in the computation of result F[i].

Using a processor, the resulting execution profile is similar to Figure 4-2. This application
profile focuses only on the EXE stage of instruction processing in a central processing unit
(CPU). This is the only stage in instruction processing that is shared between processors and
FPGAs. In this example, the execution trace is sequential due to the execution platform, not
the algorithm. Based on the algorithm, the values of A[i] and D[i] can be computed in
any order or at the same time. The only algorithmic restriction is that both of these values
must be computed before F[i].

X-Ref Target - Figure 4-1

Figure 4-1: Example Code for Three Operations

A[i] = B[i] * C[i];
D[i] = B[i] * E[i];
F[i] = A[i] + D[i];
Introduction to FPGA Design with Vivado HLS 33
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=34

Chapter 4: Vivado High-Level Synthesis
X-Ref Target - Figure 4-2

Figure 4-2: Execution of Example Code on a Processor

0 1 2 3 4 Time

Read E[i]

B[i] * E[i]

Write D[i]

A[i] + D[i]

Write F[i]

5 6 7 8

Write A[i]

Read B[i]

Read C[i]

B[i] * C[i]

X13479
Introduction to FPGA Design with Vivado HLS 34
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=35

Chapter 4: Vivado High-Level Synthesis
Figure 4-3 shows the result of compiling the code in Figure 4-1 to an FPGA using the
default settings in Vivado HLS. The resulting execution profile is similar to that of the
processor in that the multiplications and addition occur in sequential order. The reason for
this default behavior is to minimize the number of building blocks required to implement
the user application. Although an FPGA does not have a fixed processing architecture, each
device has a maximum number of building blocks it can sustain. Therefore, the designer can
evaluate FPGA resources versus application performance versus the number of applications
per device.

Even with the default behavior, the implementation outperforms the processor execution
due to the custom memory architecture created for the algorithm. On the processor, arrays
A, B, C, D, E, and F are stored in a single memory space and can only be accessed one at a
time. In contrast, HLS detects these memories and creates an independent memory bank for
each array, which results in an overlap between the read operations of array B and array C.

The scheduling of the read operation of array E in clock cycle 1 shows one of the automatic
resource optimizations from Vivado HLS. For memory operations, Vivado HLS analyzes the
banks containing the data and where the value is consumed during computation. Although
the read of array E can occur during clock cycle 0, Vivado HLS automatically places the
memory operation as close as possible to the location where the data is consumed to
reduce the amount temporary data storage in the circuit. Because the multiplier using the
value of E does not run until clock cycle 2, there is no benefit in scheduling the read access
to occur sooner than clock cycle 1.

X-Ref Target - Figure 4-3

Figure 4-3: Default Execution of HLS Code on an FPGA

0 1 2 3 4 Time

Write F[i]

5 6 7 8

A[i] + D[i]

Read C[i]

Read E[i]

Write D[i]

Read B[i]

Write A[i]

B[i] * E[i]

B[i] * C[i]

X13480
Introduction to FPGA Design with Vivado HLS 35
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=36

Chapter 4: Vivado High-Level Synthesis
Another way in which Vivado HLS helps the user control the size of the generated circuit is
by providing data types for the sizing of variables. Similar to all compilers, Vivado HLS
offers the user access to integer, single precision, and double precision data types. This
enables rapid migration of software onto the FPGA but might mask algorithm inefficiencies,
which are a result of the 32-bit and 64-bit datapaths available in processors.

For example, assume that the code in Figure 4-1 only requires 20-bit values in arrays B, C,
and E. In the original processor code, these bit sizes would require arrays A, D, and F to be
capable of storing 64-bit values to avoid any loss of precision. Vivado HLS can compile the
code as is, but this results in an inefficient 64-bit datapath that consumes more resources
than is required by the algorithm.

Figure 4-4 shows an example of how to rewrite the code in Figure 4-1 with the Vivado HLS
arbitrary precision data types. The use of these data types enables rapid software-level
exploration and validation of the minimum required precision needed for algorithm
correctness. Besides reducing the number of resources required to implement a
computation, the use of arbitrary precision data types reduces the number of levels of logic
required to complete an operation. This in turn reduces the latency of a design.

As mentioned in Chapter 3, Basic Concepts of Hardware Design, pipelining, or the division
of computation into smaller register-bound regions, is an essential FPGA design technique
for achieving a target clock frequency. Based on the size of operations, this optimization is
automatically implemented by Vivado HLS. Vivado HLS divides large operators into multiple
computation stages with a corresponding increase in circuit latency.

Conditional Statements
Conditional statements are program control flow statements that are typically implemented
as if, if-else, or case statements. These coding structures are an integral part of most
algorithms and are fully supported by all compilers, including HLS. The only difference
between compilers is how these types of statements are implemented.

X-Ref Target - Figure 4-4

Figure 4-4: Coding Example Using HLS Arbitrary Precision Types

ap_int<40> A[10], D[10];
ap_int<41> F[10];
ap_int<20> B[10], C[10], E[10];
...
A[i] = B[i] * C[i];
D[i] = B[i] * E[i];
F[i] = A[i] + D[i];
Introduction to FPGA Design with Vivado HLS 36
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=37

Chapter 4: Vivado High-Level Synthesis
With a processor compiler, conditional statements are translated into branch operations
that might or might not result in a context switch. The introduction of branches disrupts the
maximum instruction execution packing shown in Figure 3-2 by introducing a dependence
that affects which instruction is fetched next from memory. This uncertainty results in
bubbles in the processor execution pipeline and directly affects program performance.

In an FPGA, a conditional statement does not have the same potential impact on
performance as in a processor. Vivado HLS creates all the circuits described by each branch
of the conditional statement. Therefore, the runtime execution of a conditional software
statement involves the selection between two possible results rather than a context switch.

Loops
Loops are a common programming construct for expressing iterative computation. One
common misconception is that loops are not supported when working with compilers like
HLS. Although this might be true with early versions of compilers for FPGAs, HLS fully
supports loops and can even do transformations that are beyond the capabilities of a
standard processor compiler. Figure 4-5 shows an example of a simple loop.

For illustration purposes, assume that the loop takes four clock cycles per iteration
regardless of the implementation platform. On a processor, the compiler is forced to
schedule loop iterations sequentially for a total run time of 40 cycles, as shown in
Figure 4-6.

HLS does not have this limitation. Because HLS creates the hardware for the algorithm, it
can alter the execution profile of a loop by pipelining iterations. Loop iteration pipelining
extends the concept of operation parallelization from within loop iterations to across
iterations.

X-Ref Target - Figure 4-5

Figure 4-5: Loop Code

X-Ref Target - Figure 4-6

Figure 4-6: Loop Iteration Scheduling on a Processor

for(i=0; i < 10; i++)
{
 A = A + (B[i] * C[i]);
}

0 1 2 3 4 Time

i = 1

5 6 7 8

i = 0

First Loop Iteration Second Loop Iteration

X13481
Introduction to FPGA Design with Vivado HLS 37
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=38

Chapter 4: Vivado High-Level Synthesis
To reduce iteration latency, the first automatic optimization applied by Vivado HLS is
operator parallelization to the loop iteration body. The second optimization is loop
iteration pipelining. This optimization requires user input, because it affects the resource
consumption and input data rates of the FPGA implementation.

The default behavior of HLS is to execute loops in the same schedule as a processor, as
shown in Figure 4-6. This means that the code in Figure 4-5 has a processing latency of 40
cycles and an input data rate of once every 4 cycles. In this example, the input data rate is
defined by how quickly the values of B and C can be sampled from the input.

HLS can parallelize or pipeline the iterations of a loop to reduce computation latency and
increase the input data rate. The user controls the level of iteration pipelining by setting the
loop initialization interval (II). The II of a loop specifies the number of clock cycles between
the start times of consecutive loop iterations. Figure 4-7 shows the resulting loop schedule
after setting the value of II to 1.

To achieve this result, HLS analyzes the data dependencies and resource contentions
between loop iterations 0 and 1 and automatically resolves issues as follows:

• To resolve data dependencies, HLS alters one of the operations in the loop body or
queries the user for algorithm changes.

• To resolve resource contentions, HLS instantiates more copies of the resource or
queries the user for algorithm changes.

The effect of loop pipelining on execution characteristics is summarized in Table 4-1.

X-Ref Target - Figure 4-7

Figure 4-7: Loop Iteration Scheduling with II = 1

Table 4-1: Loop Execution Profile on Different Compilers

Compiler Loop Execution Latency Input Data Rate

Processor 40 Every 4 clock cycles

Default HLS 40 Every 4 clock cycles

HLS, II = 1 14 Every clock cycle

0 1 2 3 4 Time

i = 1

5 6 7 8

i = 0

X13482
Introduction to FPGA Design with Vivado HLS 38
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=39

Chapter 4: Vivado High-Level Synthesis
Functions
Functions are a programming hierarchy that can contain operators, loops, and other
functions. The treatment of functions in both HLS and processor compilers is similar to that
of loops.

In HLS, the main difference between loops and functions is related to terminology. HLS can
parallelize the execution of both loops and functions. With loops, this transformation is
typically referred to as pipelining, because there is a clear hierarchy difference between
operators and loop iterations. With functions, operations outside of a loop body and within
loops are in the same hierarchical context, which might lead to confusion if the term
pipelining is used. To avoid potential confusion when working with HLS, the parallelization
of function call execution is referred to as dataflow optimization.

The dataflow optimization instructs HLS to create independent hardware modules for all
functions at a given level of program hierarchy. These independent hardware modules are
capable of concurrent execution and self-synchronize during data transfer.

Dynamic Memory Allocation
Dynamic memory allocation is one of the memory management techniques available in the
C and C++ programming languages. In this method, the user can allocate as much memory
as necessary during program runtime. The size of the allocated memory can vary between
executions of the program and is allocated from a central physical pool of memory as
described in Chapter 3, Basic Concepts of Hardware Design. The function calls typically
associated with dynamic memory allocation are shown in Table 4-2.

As discussed in Chapter 3, Basic Concepts of Hardware Design, an FPGA does not have a
fixed memory architecture onto which the HLS compiler must fit the user application.
Instead, HLS synthesizes the memory architecture based on the unique requirements of the
algorithm. Therefore, all code provided to the HLS compiler for implementation in an FPGA
must use compile time analyzable memory allocation only.

Table 4-2: Functions Used in Dynamic Memory Management

C C++

malloc() new()

calloc() delete()

free()
Introduction to FPGA Design with Vivado HLS 39
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=40

Chapter 4: Vivado High-Level Synthesis
To aid the user in ensuring that all code provided to HLS is synthesizable, the compiler
executes a coding compliance pass before analyzing the design. This code compliance pass
flags all coding styles that are not suitable for HLS. It is the responsibility of the user to
manually change the code and remove all instances of dynamic memory allocation.

The code in Figure 4-8 allocates a region in memory to store 10 values of 32 bits each.

Although this coding example clearly states a constant memory allocation, the HLS code
compliance stage does not analyze the contents of the malloc statement. HLS cannot
synthesize code that includes any of the keywords in Table 4-2 even if the allocation is
constant, as in the example shown in Figure 4-8. There are two possible methods of
modifying this code to comply with HLS. The following code examples show these methods
and explain their implications on the FPGA implementation.

The code in Figure 4-9 shows automatic memory allocation by a C/C++ program. HLS
implements this memory style in strict accordance with the behavior stipulated by C/C++.
This means that the memory created to store array A only stores valid data values during
the duration of the function call containing this array. Therefore, the function call is
responsible for populating A with valid data before each use.

The code in Figure 4-10 shows static memory allocation by a C/C++ program. The behavior
for this type of memory allocation dictates that the contents of array A are valid across
function calls until the program is completely shut down. When working with HLS, the
memory that is implemented for array A contains valid data as long as there is power to the
circuit.

Both automatic and static memory allocation techniques can increase the overall software
memory footprint of an algorithm running on a processor. When specifying algorithms in
C/C++ for FPGA implementation, the most important consideration is the overall goal of
the user application. That is, the main goal when compiling to an FPGA is not creating the
best software algorithm implementation. Instead, when using tools like HLS, the goal is to
capture the algorithm in a way that allows the tool to infer the best possible hardware
architecture, which results in the best possible implementation.

X-Ref Target - Figure 4-8

Figure 4-8: Dynamic Memory Allocation

X-Ref Target - Figure 4-9

Figure 4-9: HLS-Compliant Automatic Memory Allocation

X-Ref Target - Figure 4-10

Figure 4-10: HLS-Compliant Static Memory Allocation

int *A = malloc(10*sizeof(int));

int A[10];

static int A[10];
Introduction to FPGA Design with Vivado HLS 40
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=41

Chapter 4: Vivado High-Level Synthesis
Pointers
A pointer is an address to a location in memory. Some of the common uses for pointers in
a C/C++ program are function parameters, array handling, pointer to pointer, and type
casting. The inherent flexibility of this language construct makes it a useful and popular
element of C/C++ code. The HLS compiler supports pointer usage that can be completely
analyzed at compile time. An analyzable pointer usage is usage that can be fully expressed
and computed in a pen and paper computation without the need for runtime information.

The code in Figure 4-8 shows the use of a pointer to reference a dynamically allocated
region in memory. As previously described, this usage is not supported with HLS, because
the destination address of the pointer is only known during program execution. This does
not mean that pointer usage for memory management is unsupported when using the HLS
compiler. Figure 4-11 shows a valid coding style in which pointers are used to access a
memory.

This code is valid, because all uses of pointer pA can be analyzed and mapped back to array
A. Because array A is created by automatic memory allocation, HLS can fully determine the
properties of A.

Another supported model for memories and pointers is in accessing external memory.
When using HLS, any pointer access on function parameters implies either a variable or an
external memory. HLS defines an external memory as any memory outside of the scope of
the compiler-generated RTL. This means that the memory might be located in another
function in the FPGA or in part of an off-chip memory, such as DDR.

X-Ref Target - Figure 4-11

Figure 4-11: Managing Array Access with a Pointer

int A[10];
int *pA;

pA = A;
Introduction to FPGA Design with Vivado HLS 41
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=42

Chapter 4: Vivado High-Level Synthesis
In the code shown in Figure 4-12, function foo is a top-level module for HLS with data_in
as a parameter. Based on the multiple pointer access on data_in, HLS infers that this
function parameter is an external memory module, which must be accessed through a bus
protocol at the hardware level. A bus protocol, such as Advanced eXtensible Interface (AXI)
protocol, specifies how multiple functions can connect and communicate with each other.

X-Ref Target - Figure 4-12

Figure 4-12: Pointer to External Memory

void foo(int *data_in,...)
{
 int item1, item2, item3;

 item1 = *data_in;
 item2 = *(data_in + 1);
 item3 = *(data_in + 2);
 ...
}

Introduction to FPGA Design with Vivado HLS 42
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=43

Chapter 5

Computation-Centric Algorithms

Overview
Although there is a large body of literature on algorithm analysis, the nuances of
computation- versus control-centric algorithms are largely dependent on the
implementation platform. This chapter defines computation-centric algorithms in the
context of the Vivado® HLS compiler and FPGAs. It also includes examples and best
practice recommendations to maximize the performance of the HLS-generated
implementation.

A computation-centric algorithm is an algorithm that is configured once per task and
cannot change its behavior for the duration of a task. A task in hardware is the same as a
function call in a C/C++ program. The size of the task is under the control of the HLS user.

RECOMMENDED: In general, it is recommended that the size of a task be based on the natural work
division in the algorithm.

Figure 5-1 shows the code for a Sobel edge detection operation. This is an example of a
computation-centric algorithm that can be divided into tasks of different sizes. This
algorithm is a two-dimensional filtering operation that computes the edge of a region in an
image by computing the gradient of each pixel in the x and y directions. As currently
written, this code can be compiled by HLS into an FPGA implementation.

X-Ref Target - Figure 5-1

Figure 5-1: Sobel Edge Detection Algorithm—Task Choice 1

for(i = 0; i < height; i++){
 for(j = 0; j < width; j++){
 x_dir = 0;
 y_dir = 0;
 if((i > 0) && (i < (height-1)) && (j > 0) && (j<(width-1))){
 for(rowOffset = -1; rowOffset <= 1; rowOffset++){
 for(colOffset= -1; colOffset <= 1; colOffset++){
 x_dir = x_dir + input_image[i+rowOffset][j+colOffset] * Gx[1+rowOffset][1+colOffset];
 y_dir = y_dir + input_image[i+rowOffset][j+colOffset] * Gy[1+rowOffset][1+colOffset];
 }
 }
 edge_weight = ABS(x_dir) + ABS(y_dir);
 output_image[i][j] = edge_weight;
}

Introduction to FPGA Design with Vivado HLS 43
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=44

Chapter 5: Computation-Centric Algorithms
To properly optimize this algorithm, the designer must first decide the size of a task. The
size of a task determines how often the generated hardware module needs to be configured
and how often it needs to receive a new batch of data. Figure 5-2 and Figure 5-3 show two
possible task definitions for the code in Figure 5-1. An alternate choice is to define the code
in Figure 5-1 as a task.

Task Choice 2 (Figure 5-2) creates a hardware module for only the gradient computation.
The gradient computation works on a 3x3 pixel window and does not support the concept
of a line or an image frame. The problem with this choice is the mismatch between the
amount of work executed by this choice and the natural work division of the algorithm. The
Sobel edge detection works at the scope of complete images. This means that for this
choice of task size, the designer must determine how to partition the image into the 3x3
pixel slices required by the task processor built with HLS. Either a processor or additional
hardware modules are needed to complete the functionality of the algorithm.

Task Choice 3 (Figure 5-3) handles a full pixel line per task. This is an improvement over Task
Choice 1, because it requires fewer additional modules to implement the complete
functionality of the algorithm. This approach also reduces the interaction with a control
processor to once per line. The problem with sizing a task to handle a single line at a time
is that the underlying operation requires multiple lines to compute a result. With this
choice, a complex control mechanism might be needed to sequence image lines into the
HLS-generated hardware module.

X-Ref Target - Figure 5-2

Figure 5-2: Task Choice 2 for the Sobel Edge Detection Algorithm

for(rowOffset = -1; rowOffset <= 1; rowOffset++){
 for(colOffset= -1; colOffset <= 1; colOffset++){
 x_dir = x_dir + input_image[i+rowOffset][j+colOffset] * Gx[1+rowOffset][1+colOffset];
 y_dir = y_dir + input_image[i+rowOffset][j+colOffset] * Gy[1+rowOffset][1+colOffset];
 }
}

X-Ref Target - Figure 5-3

Figure 5-3: Task Choice 3 for the Sobel Edge Detection Algorithm

for(j = 0; j < width; j++){
 x_dir = 0;
 y_dir = 0;
 if((i > 0) && (i < (height-1)) && (j > 0) && (j<(width-1))){
 for(rowOffset = -1; rowOffset <= 1; rowOffset++){
 for(colOffset= -1; colOffset <= 1; colOffset++){
 x_dir = x_dir + input_image[i+rowOffset][j+colOffset] * Gx[1+rowOffset][1+colOffset];
 y_dir = y_dir + input_image[i+rowOffset][j+colOffset] * Gy[1+rowOffset][1+colOffset];
 }
 }
 edge_weight =ABS(x_dir) + ABS(y_dir);
 output_image[i][j] = edge_weight;
}
Introduction to FPGA Design with Vivado HLS 44
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=45

Chapter 5: Computation-Centric Algorithms
Task Choice 1 (Figure 5-1) is the best selection for this algorithm, because it matches the
full image per function call expressed in the code shown in Figure 5-1. This choice is a
computation-centric task, because the configuration of the generated FPGA
implementation is fixed for the duration of an image frame. The size of the processed image
can be changed between frames but not after the task starts.

After the proper size of a task is determined, the user must optimize the algorithm
implementation using HLS compiler options. For the code in Figure 5-1, the FPGA
implementation has a target image size of 1080 pixels at 60 frames per second. This
translates into a hardware module capable of processing 1920 x 1080 pixels at a clock
frequency of 150 MHz with an incoming data rate of 1 pixel per clock cycle.

Data Rate Optimization
In the HLS compiler, code optimization begins with the baseline compilation. The purpose
of the baseline compilation is to determine where the implementation bottlenecks are
located and to set a reference point for measuring the effect of different optimizations. The
baseline compilation builds the algorithm implementation with as few FPGA resources as
possible and with the lowest input data rate. In the example in this chapter, the baseline
compilation results in an incoming data rate of 1 pixel every 40 clock cycles.

When using the HLS compiler, pipeline optimization is the way to increase the input data
rate and the parallelism in the generated implementation. As discussed in Chapter 2, What
is an FPGA? and Chapter 3, Basic Concepts of Hardware Design, pipelining divides a large
computation into smaller stages that can execute concurrently. When applied to a loop,
pipelining sets the initiation interval (II) of the loop.

The loop II controls the input data rate of a loop by affecting the number of clock cycles it
takes to start the i+1 iteration. The designer can choose where to apply the pipeline
optimization in the algorithm code. Figure 5-4 shows the application of the pipeline
pragma to the window computation.

Note: For details on the pragmas available in the HLS compiler, see the Vivado Design Suite User
Guide: High-Level Synthesis (UG902) [Ref 1].
Introduction to FPGA Design with Vivado HLS 45
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=46

Chapter 5: Computation-Centric Algorithms
The example in Figure 5-4 shows the pipeline optimization applied directly into the
algorithm source as a compiler pragma. At this level in the code, the effect of the pipeline
pragma is to compute one field in the 3x3 filter window per clock cycle. Therefore, nine
clock cycles are required to compute the multiplications in the 3x3 window as well as one
additional clock cycle to generate the result pixel. At the application level, this means that
the input sample rate becomes 1 pixel every 10 clock cycles, which is not sufficient to satisfy
the application requirements.

Figure 5-5 shows the application of the pipeline pragma to the j loop, which spans the
columns of an image. By applying the pipeline pragma on this loop, the HLS
implementation can achieve a 1 pixel per clock cycle input data rate. To achieve this new
input data rate, the compiler first completely unrolls the window computation loops so that
all gradient multiplications can occur in parallel. The unrolling procedure instantiates
additional hardware and increases the memory bandwidth requirements to nine memory
operations on the input image per clock cycle.

X-Ref Target - Figure 5-4

Figure 5-4: Loop Pipeline Pragma to the Window Computation

for(i = 0; i < height; i++){
 for(j = 0; j < width; j++){
 x_dir = 0;
 y_dir = 0;
 if((i > 0) && (i < (height-1)) && (j > 0) && (j<(width-1))){
 for(rowOffset = -1; rowOffset <= 1; rowOffset++){
 for(colOffset= -1; colOffset <= 1; colOffset++){
#pragma HLS PIPELINE
 x_dir = x_dir + input_image[i+rowOffset][j+colOffset] * Gx[1+rowOffset][1+colOffset];
 y_dir = y_dir + input_image[i+rowOffset][j+colOffset] * Gy[1+rowOffset][1+colOffset];
 }
 }
 edge_weight =ABS(x_dir) + ABS(y_dir);
 output_image[i][j] = edge_weight;

}

X-Ref Target - Figure 5-5

Figure 5-5: Loop Pipeline Pragma to the J Loop

for(i = 0; i < height; i++){
 for(j = 0; j < width; j++){
#pragma HLS PIPELINE
 x_dir = 0;
 y_dir = 0;
 if((i > 0) && (i < (height-1)) && (j > 0) && (j<(width-1))){
 for(rowOffset = -1; rowOffset <= 1; rowOffset++){
 for(colOffset= -1; colOffset <= 1; colOffset++){
 x_dir = x_dir + input_image[i+rowOffset][j+colOffset] * Gx[1+rowOffset][1+colOffset];
 y_dir = y_dir + input_image[i+rowOffset][j+colOffset] * Gy[1+rowOffset][1+colOffset];
 }
 }
 edge_weight =ABS(x_dir) + ABS(y_dir);
 output_image[i][j] = edge_weight;

}
Introduction to FPGA Design with Vivado HLS 46
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=47

Chapter 5: Computation-Centric Algorithms
Although the HLS compiler can detect the need for a higher memory bandwidth than is
expressed in an algorithm, the compiler cannot automatically introduce any changes that
affect algorithm correctness. In this example, the nine concurrent memory accesses
required by the pipeline optimization cannot be satisfied by a memory that is beyond the
boundaries of the HLS-generated module.

Regardless of the number of ports on the external memory, an HLS-generated module can
only connect to a single port that is capable of one transaction per clock cycle. Therefore,
the algorithm must be modified to move the memory bandwidth requirement away from
the module input ports and to a memory that is generated by the HLS compiler. This
internal memory is similar to a cache in a processor. For image processing algorithms like
Sobel edge detection, this local memory is referred to as a line buffer.

The line buffer is a multi-bank internal memory that provides the generated
implementation with concurrent access to pixels from three different lines per clock cycle.
Before any computation can begin, algorithms that implement a line buffer must allocate
time to fill the structure with enough data to cover the requirements of the computation.
This means that to satisfy the memory requirement of nine accesses per computed result,
the algorithm must account for the movement of data through the line buffer as well as the
additional bandwidth generated by the algorithm change.

Figure 5-6 shows the movement of image pixels through a line buffer.

The light gray boxes indicate the pixels currently stored by this memory structure. The
purpose of this block is to store only the minimum number of pixels required for functional
correctness and not to store the entire image. As previously mentioned, the addition of this
memory structure introduces a delay between input pixel sampling and output pixel
computation. For a 3x3 window operation, such as in the code shown in Figure 5-5, the line
buffer must store two complete image lines and the first three pixels of the third line before

X-Ref Target - Figure 5-6

Figure 5-6: Data Movement in a Line Buffer

Output Pixel
Read

Input Pixel
Write

X13483
Introduction to FPGA Design with Vivado HLS 47
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=48

Chapter 5: Computation-Centric Algorithms
the first output pixel can be computed. The dark gray and black boxes indicate this latency.
The black box highlights where the next input pixel from the source image is written. The
dark gray box shows the location of the current computed pixel in the output image.

HLS implements a line buffer using BRAM resources from the FPGA fabric. These dual-port
memory elements are arranged in banks in which one bank corresponds to one line.
Therefore, the memory bandwidth available for algorithm computation triples to 3 pixels
per clock cycle from the original 1 pixel per clock cycle. This is still not sufficient to satisfy
the requirement of 9 pixels per clock cycle.

To meet the 9-pixel-per-clock-cycle requirement, the designer must add a memory window
to the algorithm source code in addition to the line buffer. A memory window is a storage
element implemented using the FF resources from the FPGA fabric. Each register in this
memory can be accessed independently of and simultaneously to all other registers. In
logical terms, a memory composed of FF elements can take on any shape that best fits the
algorithm description in C/C++.

Figure 5-7 shows a memory window for the Sobel edge detection algorithm.

The center pixel in gray highlights the pixel for which the gradient is computed. The black
column represents the 3 pixels provided by the line buffer. At each clock cycle, the contents
of the window shift left to make room for a new column from the line buffer. The data reuse
and distributed implementation of the window memory provides the nine memory
operations required by the algorithm. No additional latency is introduced into the design
by this memory. The window data movement operations occur concurrently with those of
the line buffer.

X-Ref Target - Figure 5-7

Figure 5-7: Memory Window

Current Column
from Line Buffer

Previous Columns
from Line Buffer

X13484
Introduction to FPGA Design with Vivado HLS 48
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=49

Chapter 5: Computation-Centric Algorithms
The overall data movement from input to computation through a tiered memory
architecture is shown in Figure 5-8.

Figure 5-9 shows the algorithm code changes required to implement the tiered memory
architecture. This tiered architecture allows the HLS-generated implementation to achieve a
1-pixel-per-clock-cycle input data rate. In this code example, the computation kernel of the
algorithm is in the sobel_operator function. The main change in this code is the
extension of the rows and columns loops by one iteration each. This extension accounts for
the additional task execution time introduced by the line buffer. In addition, the write
operations into the line buffer are guarded by if conditions that are based on the original
image boundaries. The algorithm output write operations are based on the output image
positioning, which is offset by 1 row and 1 column from the original image.

As shown in Figure 5-9, a computation-centric application can have embedded control
statements in the form of for-loops, if-else statements, and so forth. The key characteristic
of this kind of algorithm is that its function and behavior are fixed for the duration of a task.
The HLS-generated module processes a batch of data based on a given configuration. The
configuration can change between every task, but never during a task.

TIP: Line buffer manipulation libraries are part of the video libraries available with the HLS compiler.
For more information, see the Vivado Design Suite User Guide: High-Level Synthesis (UG902) [Ref 1].

X-Ref Target - Figure 5-8

Figure 5-8: Data Movement from Input to Computation

Computational
KernelWindow

Line BufferLine BufferLine Buffer

New Data

Result
X13485
Introduction to FPGA Design with Vivado HLS 49
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=50

Chapter 5: Computation-Centric Algorithms
X-Ref Target - Figure 5-9

Figure 5-9: Sobel Edge Detection Code with Line Buffering

for(row = 0; row < rows+1; row++){
 for(col = 0; col < cols+1; col++){
 if(col < cols){
 buff_A.shift_up(col);
 temp = buff_A.getval(0,col);
 }
 if(col < cols & row < rows) {
 buff_A.insert_bottom(rgb2y(input_pixel[row][col]),col);
 }
 buff_C.shift_right();
 if(col < cols){
 buff_C.insert(buff_A.getval(2,col),0,2);
 buff_C.insert(temp,1,2);
 buff_C.insert(rgb2y(tempx),2,2);
 }
 if(row <= 1 || col <= 1 || row > (rows-1) || col > (cols-1)){
 edge.R = edge.G = edge.B = 0;
 }
 else{
 edge = sobel_operator(&buff_C);
 }
 if(row > 0 && col > 0){
 AXI_PIXEL output_pixel;
 output_pixel.data = (edge.B, edge.G);
 output_pixel.data = (output_pixel.data, edge.R);
 out_pix[row-1][col-1] = output_pixel;
 }
 }
 }
}

Introduction to FPGA Design with Vivado HLS 50
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=51

Chapter 6

Control-Centric Algorithms

Overview
A control-centric algorithm is an algorithm that can be changed during task execution
based on system-level factors. Whereas a computation-centric algorithm applies the same
operations to all input data values for the duration of a task, a control-centric algorithm
determines its operation based on the current input port status. This chapter describes the
best practices for optimizing these types of applications with the Vivado® HLS compiler.

Expressing Control in C/C++
Before describing best practices, it is important to review how control is expressed in the C
and C++ languages.

Loops
Loops are a fundamental programming construct for expressing iterative computation. Like
all compilers, HLS allows loops to be expressed as for-loops, while-loops, and do-while
loops. This construct is supported in all types of applications compiled with Vivado HLS. As
demonstrated in the Sobel edge detection example in Chapter 5, Computation-Centric
Algorithms, loops are essential to the capture of computation-intensive algorithms in
C/C++.
Introduction to FPGA Design with Vivado HLS 51
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=52

Chapter 6: Control-Centric Algorithms
Figure 6-1 shows an example of a for-loop and the effects of Vivado HLS compilation. It
illustrates how the Vivado HLS compilation generates both computation and control logic
as part of a single FPGA implementation. Unlike previous generations of code compilers for
FPGA fabrics, the Vivado HLS compiler does not distinguish between control and
computation language constructs. For the code in this figure, HLS generates a pipelined
datapath for the mathematical operations in the loop. This kind of implementation reduces
execution latency by parallelizing computations both within and across loop iterations. In
addition to this logic, the Vivado HLS implementation also embeds the loop controller
logic. The loop controller logic dictates how many times the hardware is executed to
compute the value of y.

X-Ref Target - Figure 6-1

Figure 6-1: Loop Example

*

+

a

x

y

+
b

c

Datapath Control Logic

start done
X13486

HLS Compilation

int a,b,c,x,y;
for(int i = 0; i < 20; i++) {
 x = get();
 y = a*x + b + c;
 send(y);
}

Introduction to FPGA Design with Vivado HLS 52
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=53

Chapter 6: Control-Centric Algorithms
Conditional Statements
Conditional statements are typically expressed as if-else statements in C and C++. In
hardware implementation, this results in a choice between two results or two execution
paths based on a trigger value. This useful construct allows the designer to exert control
over an algorithm at either a variable or function level. Both of these use cases are fully
supported by the HLS compiler.

Figure 6-2 shows an example of an if-else statement in which the if statement selects
between two different functions in an algorithm. The Vivado HLS compiler-generated
implementation allocates FPGA resources for both function_a and function_b. Both of
these hardware circuits run in parallel and are balanced to generate a result on the same
clock cycle. The condition trigger in the original source code is used to select between the
two computed results.

X-Ref Target - Figure 6-2

Figure 6-2: If-Else Example

function selector

result

HLS Compilation

function_a() function_b()

condition1

X13487

if (condition1) {
 result = function_a();
}
 else {
 result = function_b();
}

Introduction to FPGA Design with Vivado HLS 53
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=54

Chapter 6: Control-Centric Algorithms
Case Statements
Case statements define a specific sequence of operations or events in a program based on
the value of an input variable. Although this construct can be used in computation-centric
algorithms, it is more prevalent in control-centric applications where changes at the system
level directly affect module execution. Also, in a majority of use models, case statements
explicitly define the transition from one program control region to another.

Figure 6-3 shows an example case statement and the results of compilation with Vivado
HLS. The compiler converts case statements into a hardware finite state machine (FSM). The
arrays of the FSM denote the transitions between states and correspond to the case
transitions in the code sample. Each state in the FSM also includes the computation logic
within a program control region.

Control System Classification
After a control-centric application is captured using code constructs, the next decision
facing the designer is the platform on which to run the application. In the past, a processor
was often chosen as the most suitable platform. As the Zynq®-7000 SoC demonstrates,
there are still many use cases where a processor is the best choice. However, the HLS
compiler eliminates the issue of state machine optimization and complexity as a bottleneck
to implementing a control algorithm in the FPGA fabric. The designer has the option of
running the same control algorithm either on the processor or as an HLS-generated
customer controller in the FPGA fabric. The choice between these options is then based on
algorithm response time requirements and the consumption of FPGA fabric resources.

X-Ref Target - Figure 6-3

Figure 6-3: Case Statement Example

HLS Compilation

S1

S3

S2

X13488

switch (X){
 case S1: ... X = S2; break;
 case S2: ... X = S3; break;
 case S3: ... X = S1; break;
}

Introduction to FPGA Design with Vivado HLS 54
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=55

Chapter 6: Control-Centric Algorithms
Table 6-1 shows control algorithms classified by the response time to external events.

For designs that require a very slow response time, the best implementation choice is a
processor. This choice allows more room for computation-centric algorithms to be
compiled into the FPGA fabric. Figure 6-4 shows an example of a system with a very slow
control response time.

Table 6-1: Control System Classification

Control Type Execution Budget in Clock Cycles Recommended Implementation

Very slow ≥ 1,000,000 X86 processor, DSP, or Zynq-7000
SoC

Slow 100,000 – 1,000,000 X86 processor, DSP, or Zynq-7000
SoC with HLS-generated
accelerators

Medium 1,000 – 100,000 Zynq-7000 SoC with HLS-generated
accelerators

Fast ≤ 1,000 HLS-generated custom controller

X-Ref Target - Figure 6-4

Figure 6-4: Example of Very Slow Control

VFIFO
Controller

HLS
Block #1

AXI Interconnect
Streaming

DDR3

User Space
Registers

G
TX

 T
ra

ns
ce

iv
er

s

X8
@

5
G

b/
s

In
te

gr
at

ed
 B

lo
ck

fo

r P
C

I E
xp

re
ss

 T
ec

hn
ol

og
y

v3
.0

AX
I4

-S
tre

am
 B

as
ic

 W
ra

pp
er

 fo
r P

C
I E

xp
re

ss
 T

ec
hn

ol
og

y

So
ftw

ar
e

D
riv

er

G
U

I

M
ul

tic
ha

nn
el

 D
M

A
fo

r P
C

Ie
 T

ec
hn

ol
og

y

VFIFO
Controller

AX
I M

IG

D
D

R
3

IO

X8
 P

C
Ie

 L
in

k
@

 5
.0

 G
b/

s

AXI Master

C
ha

nn
el

-0
C

2S

 S
2C

VFIFO
Controller

HLS
Block #2

VFIFO
Controller

64
-b

it
x

25
0

M
H

z

64x
250 MHz

C
ha

nn
el

-1
S2

C

 C
2S

64x
250 MHz

64x
250 MHz

64x
250 MHz

256x
200 MHz 64x1600

Mbps

Multiport Virtual FIFOSI SI

SI SI

M
I

Software Hardware

X13489
Introduction to FPGA Design with Vivado HLS 55
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=56

Chapter 6: Control-Centric Algorithms
For designs that require an intermediate level of speed, as shown in the slow or medium
categories, the implementation choice can either be more processors or custom logic in the
FPGA fabric. In these cases, the control algorithm has a critical function that must be
implemented as a hardware module. For these types of systems, the purpose of the
hardware co-processor is to make up for communication latency or lack of processing
speed in the control processor. Figure 6-5 shows an example of a system that requires a
hardware co-processing element.

The final class of control-centric applications is the fast response time category. This
category refers to control applications that require a response time and computation
throughput higher than a processor can provide. Since the introduction of the HLS
compiler, the scope of algorithms that fall into this category has expanded. For example, the
HLS compiler is increasingly used to generate processor accelerator modules for the
Zynq-7000 SoC.

UDP Packet Processing
User datagram protocol (UDP) is a stateless data transfer protocol used in computer
networking applications. This protocol does not guarantee packet delivery nor does it
handle lost packet recovery. Instead, it transmits packets as fast as possible on either a
wired or wireless channel. The data rate achievable by this protocol makes it a standard for
Internet telephony, video streaming, and other applications where data rate is more
important than receiving every packet in the transmission.

X-Ref Target - Figure 6-5

Figure 6-5: Example System with HLS-Generated Co-Processor

VFIFO
Controller HLS

Block #1

AXI Interconnect
Streaming

DDR3

S
of

tw
ar

e
A

P
I

VFIFO
Controller

A
X

I M
IG

D
D

R
3

IO

VFIFO
Controller

HLS
Block #2

VFIFO
Controller

64x
250 MHz

64x
250 MHz

64x
250 MHz

64x
250 MHz

256x
200 MHz 64x1600

Mbps

Multiport Virtual FIFOSI SI

SI SI

M
I

HLS-Generated
Co-Processor

X13490

Zynq-7000 AP
SoC ARM
Cortex-A9
Introduction to FPGA Design with Vivado HLS 56
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=57

Chapter 6: Control-Centric Algorithms
Although this protocol does not keep track of packet delivery and state, it is still a
control-centric application. The control aspects of a UDP packet processor are:

• Parsing incoming data packets at the line transmission rate

• Responding to control packets from the network

• Formatting data packets for transfer

• Handling transport channel interruptions

All of these control aspects result in the complex state machine shown in Figure 6-6. Before
the introduction of the HLS compiler, this level of complex control was always targeted at a
processor, even at the cost of sacrificing performance. The main reason for this
implementation choice is the difficulty in efficiently expressing and balancing an FSM of
this size in a manual design flow.

As shown in Figure 6-6, the UDP packet processing FSM is a complex network of
interconnected states. Each state handles a different phase of packet processing. In addition
to the complex interactions between states, every state can be interrupted by system-level
events. These events might trigger a request for status information from the application or
reconfigure how the next packet is processed. Unlike a computation-centric application,

X-Ref Target - Figure 6-6

Figure 6-6: UDP Packet Processing FSM

ARP
Request

ARP
Response

UDP
DHCP

Prepare
UDP

Packet

UDP
Control

Generate
Checksums

Identify
Packet

Stream to
TEMAC

RX
Interrupt

DHCP
Exchange

ADC Samples
from Core

Stream Control
Instruction to Core

X13491
Introduction to FPGA Design with Vivado HLS 57
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=58

Chapter 6: Control-Centric Algorithms
there is not a well-defined task size for packet processing. Every packet must be analyzed,
which means the duration of a task is infinite as long as there is power to the device. The
implementation of the UDP processing FSM begins with the top-level function signature.

Figure 6-7 shows the top-level function signature of a UDP packet processing engine
targeted for FPGA implementation using the HLS compiler. In this function, the arrays are
used to model physical communication buffers between this module and the rest of the
system. Also important to note is the use of the volatile keyword to mark every function
variable that is not an array. As shown in Figure 6-6, this controller must be able to handle
interrupts from the system during any stage of execution. The problem with this
requirement is the function variable behavior as specified in both C and C++.

In C and C++, function variables are sampled and stored in a local copy inside the function
memory space when the function call is issued. This means that in addition to potentially
storing the same variable in multiple memory spaces, a C/C++ program does not detect a
change in the value of a variable until the next function call. The volatile keyword is the
language solution to this problem. This construct, which is familiar to the embedded
software developer, informs the C/C++ compiler that a variable can change value during
the duration of a function call. Therefore, the volatile variable must be accessed directly
from the function ports every time it is used in the code. Although this language construct
fixes the data access problem, it does not remove the internal copy of the variable.

The issue of potential duplication of data across memory spaces is resolved by the const
qualifier. When this qualifier is applied to a function port, the compiler avoids creating the
local copy of the variable within the function memory space. Instead, the read or write
operation happens directly on the variable port. In the hardware, the usage of a const
volatile qualifier allows the system to react to external inputs during a task and reduces
the latency of the reaction.

X-Ref Target - Figure 6-7

Figure 6-7: UDP Processor Function Signature

bool udp_proc(const Xuint8 device_mac[6],
 const Xuint32 rxdescriptor[RX_DESCRIPTOR_RAM_SIZE],
 const Xuint8 rxram[MAX_RX_RAM],
 const volatile bool *dma_start_ack,
 const volatile bool *rx_irq,
 const volatile bool Xuint8 *rx_status,
 const volatile bool *tx_rts,
 volatile bool *dma_start,
 volatile bool *rx_irq_ack,
 volatile bool *rx_lock_page)
Introduction to FPGA Design with Vivado HLS 58
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=59

Chapter 6: Control-Centric Algorithms
Figure 6-8 shows the code that encapsulates the main processing of the UDP control FSM.

The execution of the UDP control FSM is divided into an initialization and normal execution
phase. The initialization phase occurs as soon as the FPGA implementation comes out of
reset. In this phase, status flags are set to default values and the media access control (MAC)
address of the block is loaded from memory. The MAC address is the unique network
identifier onto which a dynamic host configuration protocol (DHCP) address is assigned.
After the UDP controller can broadcast its address, it starts to process network control
packets to request and register an internet protocol (IP) address with the network. After the
controller is properly registered in the network, it switches into a normal operating mode
and starts generating UDP packets. Aside from the specific functionality, this code
demonstrates how control and computational coding elements can be combined within a
single control-centric application.

The code in Figure 6-8 shows a single level of control hierarchy based on two execution
phases. In practice, control-centric applications are more complex than this example and
exhibit a hierarchical control structure. The ability to capture a control hierarchy in the same
way it is expressed for a processor is one of the key differences between HLS and other
software compilers for hardware.

X-Ref Target - Figure 6-8

Figure 6-8: UDP FSM Main Function

if(!server_init){
 *dma_start = false;

 *rx_irq_ack = false;
 *rx_lock_page = false;
 cs_trigger = false;
 U0:for(int i = 0; i < 6; i++) local_mac[i] = device_mac[i];
 server_init = setup_lan(rx_irq, rxdescriptor,rxram,rx_status,rx_lock_page);

Packet Engine Initialization

}else{
 tx_bc = servlet(dma_start,dma_start_ack,rx_irq,rx_irq_ack,
 rxdescriptor,rxram,rx_status,rx_lock_page,tx_rts,
 &cs_trigger);
 if(tx_bc > 0){
 temac_0:for(tx_a = 0; tx_a < tx_bc; tx_a++){
 if(tx_a == (tx_bc – 1))
 temac_din = 0xFF00 | txram[tx_a];
 else
 temac_din = txram[tx_a];
 temac_txif.write(temac_din);
 }
 }
}

Normal Execution

Transmit Complete Packet
Introduction to FPGA Design with Vivado HLS 59
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=60

Chapter 6: Control-Centric Algorithms
Figure 6-9 shows an example of how hierarchical control can be expressed for the HLS
compiler. This figure is a segment of the servlet function in Figure 6-8. The servlet
function controls all operation phases of the UDP controller after initialization. As this code
shows, the module has constant interaction with system-level signals to determine the next
operation. In addition, this coding style maintains the nested case statements and mix of
computation functions typical of processor code. This facilitates the capture of functionality
in C/C++ and aids in code migration from a processor to an FPGA.

Control-centric applications, such as the UDP processor, can be compiled and implemented
on an FPGA with the HLS compiler. Therefore, the decision to implement this type of code
is reduced to a resource trade-off between the needs of control code versus the needs of all
the other functions in the application. By developing the entire application using the HLS
compiler, the user can determine how many resources both the control- and data-centric
functions in the design require at different performance points. The capability of the HLS
compiler to produce multiple what-if scenarios allows the exploration of design variables,
such as throughput versus area versus latency.

X-Ref Target - Figure 6-9

Figure 6-9: Hierarchical Control Regions in UDP Processing

case IDLE :
 *dma_start = false;
 *rx_lock_page = false;
 *rx_irq_ack = false;
 *cs_trigger = false;

 if(*tx_rts) state = TXFIFO_0;
 else if(*rx_irq){
 switch(*rx_status){
 case 0x00: state = UDP_0; break;
 case 0x40: state = DHCP_0; break;
 case 0x20: state = ARP_0; break;
 default: state = ERROR_0; break;
 }
 }
 break;
case UDP_0:
 digest_rxdescriptor(rxdescriptor);
 ...
 break;
...

Setting of system-level control flags

Nested case statements
create hierarchical control regions

Computation and control functions are
intertwined as in any processor program
Introduction to FPGA Design with Vivado HLS 60
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=61

Chapter 7

Software Verification and Vivado HLS

Overview
As with processor compilers, the quality and correctness of the Vivado® HLS compiler
output depends on the input software. This chapter reviews the recommended software
quality assurance techniques that apply to the Vivado® HLS compiler. It presents examples
of typical coding errors and their effect on HLS compilation as well as possible solutions to
each problem. It also includes a section on what to do when the behavior of a program
cannot be fully verified at the C/C++ simulation level.

Software Test Bench
Verification of any HLS-generated module requires a software test bench. The software test
bench serves the following important functions:

• To prove that the software targeted for FPGA implementation runs and does not create
a segmentation fault

• To prove the functional correctness of the algorithm

Segmentation faults are an issue in HLS as they are in any other compiler. However, there is
a difference in how the coding error that caused the issue is detected. In a processor-based
execution, segmentation faults are caused by a program trying to access a memory location
that is not known to the processor. The most frequent cause for this error is a user program
trying to access a location in memory associated with a pointer address before the memory
has been allocated and attached to the pointer. Detection of this error is relatively
straightforward at runtime based on the following sequence of events:

1. Processor detects a memory access violation and notifies the operating system (OS).

2. OS signals the program or process causing the error.

3. After receiving the error signal from the OS, the program terminates and generates a
core dump file for analysis.
Introduction to FPGA Design with Vivado HLS 61
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=62

Chapter 7: Software Verification and Vivado HLS
In an HLS-generated implementation, it is difficult to detect a segmentation fault, because
there is no processor and no operating system monitoring program execution. The only
indicator of a segmentation fault is the appearance of incorrect result values generated by
the circuit. This alone is not sufficient to determine the root cause of a segmentation fault,
because there are multiple issues that can trigger incorrect result computation.

RECOMMENDED: When working with HLS, it is recommended that the designer ensure that the
software test bench compiles and executes the function without issues on a processor. This guarantees
that the HLS-generated implementation will not result in a segmentation fault.

The other purpose of the software test bench is to prove the functional correctness of an
algorithm targeted towards FPGA execution. For the generated hardware implementation,
the HLS compiler guarantees only functional equivalence with the original C/C++ code.
Therefore, the existence of a good software test bench is required to minimize efforts in
hardware verification and validation.

A good software test bench is characterized by the execution of thousands or millions of
data set tests on the software implementation of an algorithm. This allows the designer to
assert with a high level of confidence that the algorithm was captured properly. However,
even with many test vectors, it is sometimes still possible to detect errors in the
HLS-generated output during hardware verification of an FPGA design. Detecting
functional errors during hardware verification means that the software test bench was
incomplete. Applying the offending test vector to the C/C++ execution reveals the incorrect
statement in the algorithm.

IMPORTANT: Errors must not be fixed directly in the generated RTL. Any issues with functional
correctness are a direct result of the functional correctness of the software algorithm.

TIP: The software test bench used to exercise an algorithm targeted for FPGA implementation with HLS
does not have any coding style restrictions. The software engineer is free to use any valid C/C++ coding
style or construct to thoroughly test the functional correctness of an algorithm.
Introduction to FPGA Design with Vivado HLS 62
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=63

Chapter 7: Software Verification and Vivado HLS
Code Coverage
Code coverage indicates what percentage of the statements in a design are exercised by the
test bench code. This metric, which can be generated by tools like gcov, gives an idea of the
quality of the test vectors used to exercise the algorithm.

At a minimum, a test bench must receive a 90% code coverage score to be considered an
adequate test of an algorithm. This means that the test vectors trigger all branches in case
statements, conditional if-else statements, and for loops. Aside from the overall coverage
metric, the report generated by code coverage tools provide insight into which parts of a
function are executed and which are not.

Figure 7-1 shows an example application that was tested with gcov.

Running gcov requires that the code is compiled with additional flags that generate the
information needed for profiling the execution of a program. Assuming that the code from
Figure 7-1 is present in the file example.c, gcov can be run with the command sequence
shown in Figure 7-2.

X-Ref Target - Figure 7-1

Figure 7-1: Example Application for Code Coverage

int main()
{
 int i;
 int B[10];
 int C[10];
 int result;

 for(i=0; i < 10; i++){
 B[i] = i;
 C[i] = i;
 }
 result = example(B,C);
 return result;
}

int example(int B[10], int C[10])
{
 int i;
 int A=0;

 for(i=0; i < 10; i++){
 A += B[i] * C[i];
 if(i == 11)
 A = 0;
 }
 return A;
}

Test Bench Code Algorithm Code

X-Ref Target - Figure 7-2

Figure 7-2: gcov Command Sequence

gcc –fprofile-arcs –ftest-coverage example.c
./a.out
gcov example.c
Introduction to FPGA Design with Vivado HLS 63
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=64

Chapter 7: Software Verification and Vivado HLS
The gcov results indicate that 92.31% of program lines were executed, which satisfies the
minimum 90% code coverage requirement for HLS. However, the more interesting result
from gcov is the number of times each line of code is executed, as shown in Table 7-1.

The results show that the assignment A = 0, which occurs within the for-loop, is never
executed. This statement alerts the user to a possible issue with the conditional statement
gating the assignment. The gating conditional statement, i == 11, can never be true with
the loop boundaries expressed in Figure 7-1. The algorithm must check whether this is
expected behavior or not. HLS detects unreachable statements in C/C++, such as the
assignment of A to 0, as dead code to be eliminated from the circuit.

Uninitialized Variables
Uninitialized variables are a result of a poor coding style in which the designer does not
initialize variables to 0 at the point of declaration. Figure 7-3 shows an example code
fragment with uninitialized variables.

Table 7-1: gcov Analysis of the Example Code

Number of Times Executed Code Line

- int example(int B[10], int C[10])

1 {

- int i;

1 int A = 0;

11 for(i=0; i < 10; i++){

10 A += B[i] * C[i];

10 if(i == 11)

NEVER A = 0;

- }

1 return A;

- }

X-Ref Target - Figure 7-3

Figure 7-3: Uninitialized Variable Code Fragment

int A;
int B;
...
A = B * 100;
Introduction to FPGA Design with Vivado HLS 64
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=65

Chapter 7: Software Verification and Vivado HLS
In this code fragment example, variable A never poses an issue because it is assigned before
it is ever read. The issue is created by variable B, which is used in a computation before it is
assigned a value. This usage of B falls into the category of undefined behavior in both C and
C++. Although some processor compilers resolve the problem by automatically assigning 0
to B at the point of declaration, HLS does not use this type of solution.

HLS assumes that any undefined behavior in the user code can be optimized out of the
resulting implementation. This triggers an optimization cascade effect that can reduce the
circuit to nothing. A user can detect this type of error by noticing the empty RTL files for the
generated implementation.

A better way to detect this type of error is to use code analysis tools, such as valgrind and
Coverity. Both of these tools flag uninitialized variables in the user program. Like all
software quality issues, uninitialized variables must be resolved before the code is compiled
with HLS.

Out-of-Bounds Memory Access
In HLS, memory accesses are expressed either as operations on an array or as operations on
an external memory through a pointer. In the case of out-of-bounds memory access, the
focus is on arrays that are converted into memory blocks by HLS. Figure 7-4 shows a code
example with out-of-bounds memory access.

This code attempts to write data into array A at a location beyond the allocated memory
range. In a processor compiler, this type of address overflow triggers the address counter to
reset to 0. This means that in a processor execution of the code in Figure 7-4, the contents
of location A[0] are 15 instead of 5. Although the result is functionally incorrect, this kind
of error does not usually result in a program crash.

X-Ref Target - Figure 7-4

Figure 7-4: Example of Out-of-Bounds Memory Access

int A[10];
...
for(i = 0; i < 11; i++){
 A[i] = i + 5;
}

Introduction to FPGA Design with Vivado HLS 65
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=66

Chapter 7: Software Verification and Vivado HLS
With HLS, accessing an invalid address triggers a series of events that result in an
irrecoverable runtime error in the generated circuit. Because the HLS implementation
assumes that the software algorithm was properly verified, error recovery logic is not
included in the generated FPGA implementation. Therefore, an invalid memory address is
generated by the implementation of the code in Figure 7-4 to the BRAM resource element
storing the value of array A. The BRAM then issues an error condition that is not expected
by the HLS implementation, and the error is left unattended. The unattended error from the
BRAM causes the system to hang and can only be resolved with a device reboot.

To catch cases like this before circuit compilation, it is recommended that the tool is
executed through a dynamic code checker such as valgrind. Valgrind is a suite of tools
designed to check and profile the quality of a C/C++ program. The valgrind Memcheck tool
executes a compiled C/C++ program and monitors all memory operations during
execution. This tool flags the following critical issues:

• Use of uninitialized variables (Figure 7-3)

• Invalid memory access requests (Figure 7-4)

RECOMMENDED: Before using HLS to compile a software function for FPGA execution, it is
recommended that all of the issues flagged by a dynamic code checker are resolved by the designer.

Co-Simulation
Tools for C/C++ program analysis and functionality testing catch most of the issues that
affect an HLS implementation. However, these tools are unable to verify whether a
sequential C/C++ program maintains functional correctness after parallelization. This issue
is resolved in the HLS compiler by the process of co-simulation.

Co-simulation is a process in which the generated FPGA implementation is exercised by the
same C/C++ test bench used during software simulation. HLS handles the communication
between the C/C++ test bench and the generated RTL in a manner that is transparent to the
user. As part of this process, HLS invokes a hardware simulator, such as the Vivado simulator,
to emulate how the RTL will function on the device. The main purpose of this simulation is
to check that the parallelization guidance provided by the user did not break the functional
correctness of the algorithm.
Introduction to FPGA Design with Vivado HLS 66
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=67

Chapter 7: Software Verification and Vivado HLS
By default, HLS obeys all algorithm dependencies before parallelization to ensure functional
equivalence with the original C/C++ representation. In cases where an algorithm
dependence cannot be fully analyzed, HLS takes a conservative approach and obeys
dependence. This can lead the compiler to generate a conservative implementation that
does not achieve the target performance goals of the application. Figure 7-5 shows an
example of the code that triggers the conservative behavior in HLS.

The code shows a loop operating on arrays A and B, and the analysis issue occurs on array
A. The index into array A depends on loop variable i and variable k. In this example,
variable k represents a function parameter of unknown value at compile time. Therefore,
HLS cannot prove that the write into A[k+i] occurs at a different location than the read of
A[i] used in computing B[i]. Based on this uncertainty, HLS assumes an algorithmic
dependence that forces the computation of A[k+i] and B[i] to occur in sequential order
as expressed in the original C/C++ source. The user has the ability to override this
dependence and force HLS to generate a circuit in which A[k+i] and B[i] are computed
in parallel. The effects of this override only affect the generated circuit and can therefore
only be verified by co-simulation.

When using co-simulation, it is important to remember that this is a simulation of parallel
hardware being executed on a processor. Therefore, it is approximately 10,000 times slower
than C/C++ simulation. It is also important to remember that the purpose of co-simulation
is not to verify the functional correctness of an algorithm. Instead, the purpose is to check
that the algorithm was not broken by user guidance to the HLS compiler.

RECOMMENDED: It is recommended that co-simulation only be run on a subset of the test vectors used
during algorithm functional verification.

X-Ref Target - Figure 7-5

Figure 7-5: Dependence Example that Triggers Conservative HLS Implementation

for(i=0; i < M; i++){
 A[k+i] = A[i] +;
 B[i] = A[i] *;
}

Introduction to FPGA Design with Vivado HLS 67
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=68

Chapter 7: Software Verification and Vivado HLS
When C/C++ Verification Is Not Possible
The majority of use cases for HLS are in algorithms that can be fully verified for functional
correctness with a C/C++ simulation. However, there are still some cases where the C/C++
representation of an algorithm cannot be fully verified before HLS compilation. Figure 7-6
shows an example of this type of code.

This code shows a snippet of a UDP packet processing engine described in C. In this
example, all the pointers are declared with the volatile keyword. The usage of the
volatile keyword, which is common in device driver development, alerts the compiler
that the pointers are connected to storage elements that might change during the
execution of the function. This kind of pointer must be read or written every time it is
specified in the source code. Traditional compiler optimizations to coalesce pointer
accesses are also turned off by the volatile keyword.

The issue with volatile data is that the behavior of the code cannot be fully verified in a
C/C++ simulation. C/C++ simulation does not have the ability to change the value of a
pointer in the middle of the execution of the function under test. Therefore, this type of
code can only be fully verified in an RTL simulation after HLS compilation. The user must
write an RTL test bench to test the generated circuit in all possible cases for each volatile
pointer in the C/C++ source. The use of co-simulation is not applicable in this case, because
it is limited by the test vectors that can be used in a C/C++ simulation.

X-Ref Target - Figure 7-6

Figure 7-6: Code Example Using Volatile Types

case IDLE :
 *dma_start = false;
 *rx_lock_page = false;
 *rx_irq_ack = false;
 *cs_trigger = false;

 if(*tx_rts) state = TXFIFO_0;
 else if(*rx_irq){
 switch(*rx_status){
 case 0x00: state = UDP_0; break;
 case 0x40: state = DHCP_0; break;
 case 0x20: state = ARP_0; break;
 default: state = ERROR_0; break;
 }
 }
 break;
Introduction to FPGA Design with Vivado HLS 68
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=69

Chapter 8

Integration of Multiple Programs

Overview
Just as most processors run multiple programs to execute an application, an FPGA
instantiates multiple programs or modules to execute an application. This chapter focuses
on how to connect multiple modules in an FPGA and how to control these modules using a
processor. The example in this chapter uses the Xilinx® Zynq®-7000 SoC to demonstrate
interconnection between a processor and FPGA fabric.

The Zynq-7000 SoC is the first in a new class of devices targeted at low power software
execution. This device combines an Arm® Cortex™-A9 multi-core processor with FPGA
fabric in a single chip. The level of integration in this device eliminates the communication
latencies and bottlenecks associated with co-processor or acceleration solutions. This
device also eliminates the need for a PCIe® bridge to transfer data between the code
running on the processor and the code compiled by Vivado® HLS for the FPGA. Instead, the
interconnection of these two computation domains is through the use of the Advanced
eXtensible Interface (AXI) protocol.

AXI
AXI is part of the Arm Advanced Microcontroller Bus Architecture (AMBA®) family of
microcontroller buses. This standard defines how modules in a system transfer data
between one another. The AXI communication use cases that apply to an application
running on the Zynq-7000 SoC are:

• Memory mapped slave

• Memory mapped master

• Direct point-to-point stream

Note: For more information on AXI and how it is implemented for Xilinx FPGAs, see the AXI
Reference Guide (UG761) [Ref 2].
Introduction to FPGA Design with Vivado HLS 69
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=70

Chapter 8: Integration of Multiple Programs
Memory Mapped Slave
AXI4-Lite is a memory mapped slave connection that uses the same communication
mechanism as a device driver in a processor-based system. The processor code accesses a
slave accelerator core by issuing a function call to the device driver. The device driver, which
Vivado HLS generates automatically, accesses registers in the accelerator to configure and
trigger task execution. These registers, which can also be accessed directly without the
driver, reside in the memory space of the processor.

A slave accelerator in the FPGA fabric cannot initiate any data transfer on its own.
Specifically, this type of interface does not allow an accelerator to initiate data transfers
with main memory to complete its task. The transaction diagram for this interface is shown
in Figure 8-1. This diagram shows where clock cycles are spent during a transaction.
Understanding the transaction sequence and timing budget enables a designer to properly
determine the suitability and impact of this interface on application performance.

X-Ref Target - Figure 8-1

Figure 8-1: AXI4-Lite Transaction Diagram

1 Transaction = 1 32-bit Word Transfer

A
R

M
A

R
M

H
LS

 IP AXI4-Lite
Read

AXI4-Lite
Write

Read address channel
Address

and
control

Read data channel

Read
data

Write address channel
Address

and
control

H
LS

 IP

Write data channel

Write
data

Write response channel

Write
response

X13492
Introduction to FPGA Design with Vivado HLS 70
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=71

Chapter 8: Integration of Multiple Programs
Memory Mapped Master
AXI4 is a memory mapped master interface, which allows an HLS-generated module to
initiate data transactions to devices such as DDR memory without the intervention of the
processor. A block with this interface can increase the application computational
throughput by eliminating the time it takes for a processor to copy and transfer data from
main memory.

It is important to remember that the function ports associated with an AXI4 interface are
not accessible from the processor. Therefore, it is a recommended best practice for modules
with AXI4 interfaces to include some function parameters connected to an AXI4-Lite
interface. The slave interface allows the processor to communicate a base address from
which the function should fetch its task data. After the transaction base address is set, the
processor can be removed from the data transfer between memory and the acceleration
module.

Figure 8-2 shows the transaction timing diagram for an AXI4 interface. This diagram shows
the transaction sequence and associated overhead, which enables the designer to
determine how suitable this interface is for a specific application.

X-Ref Target - Figure 8-2

Figure 8-2: AXI4 Transaction Diagram

M
A

S
TE

R
M

A
S

TE
R

S
LA

V
E

S
LA

V
E

AXI4
Read

AXI4
Write

Read address channel
Address

and
control

Read data channel

Write address channel
Address

and
control

Write data channel

Write response channel

Write
response

Write
data

Write
data

Write
data

Write
date

Read
data

Read
data

Read
data

Read
data

X13493
Introduction to FPGA Design with Vivado HLS 71
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=72

Chapter 8: Integration of Multiple Programs
Direct Point-to-Point Stream
AXI4-Stream is a direct point-to-point communication channel between two modules in the
FPGA fabric. As in the case of AXI4, this transmission channel is not visible in the memory
space of the processor. It also does not have any of the overhead associated with
addressing and fetching data from memory. Instead, data is transmitted between modules
through a FIFO.

Analogous to a queue between functions in software development, AXI4-Stream is the
preferred data transfer channel between functions compiled onto the FPGA fabric.
Functions connected to this type of data transport channel run in parallel and
self-synchronize based on the state of the channel. The function connected at the stream
input, called the producer, transmits data as long as there is space in the channel. The
function connected at the stream output, called the consumer, receives data as long as the
channel reports that it is not empty.

Both consumer and producer independently interact with the AXI4-Stream channel.
Depending on the state of the channel, a function completes a transaction or waits until the
channel is ready. Data is never lost or skipped over, provided that the aggregate throughput
capability of the function meets the system-level requirements.

Figure 8-3 shows the transaction timing diagram for the AXI4-Stream data transport
channel. This channel does not provide addressing logic and has a user-defined amount of
storage. By default, an AXI4-Stream has a depth of 1, which places the producer and the
consumer in lockstep with each other. The degree of coupling between producer and
consumer can be affected by changing the amount of storage in the AXI4-Stream channel.

X-Ref Target - Figure 8-3

Figure 8-3: AXI4-Stream Transaction Diagram

P
ro

du
ce

r

C
on

su
m

erWrite data channel

data data data data

X13494
Introduction to FPGA Design with Vivado HLS 72
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=73

Chapter 8: Integration of Multiple Programs
Design Example: Application Running on a
Zynq-7000 SoC
This design example shows how to take processor code and transform it into an application
that runs on a Zynq-7000 SoC. This example walks through the following steps in the
migration process:

• Analyzing and partitioning the processor code

• Compiling the program in Vivado HLS

• Composing the system in Vivado IP integrator

• Connecting processor code and FPGA fabric functions

Note: The Arm Cortex-A9 processor inside the Zynq-7000 device can support both single program
execution and complete operating systems, such as Linux. In either operating case, the steps
required to build the application are the same. Therefore, this example focuses on the single
program execution model, which demonstrates the application migration process.

Analyzing and Partitioning the Processor Code

Most software applications targeted for a Zynq-7000 device begin as applications executing
on either a standard x86 processor or a DSP processor. Therefore, the first step in migrating
a design is to compile the program for the Arm Cortex-A9 processor and analyze its
performance. The performance analysis data of a program running on the Arm processor
guides the designer in choosing how to partition the original code between processor and
FPGA fabric.
Introduction to FPGA Design with Vivado HLS 73
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=74

Chapter 8: Integration of Multiple Programs
Figure 8-4 shows the original processor code for this example.

This design consists of a main function that calls on two sub-functions: producer and
consumer. After compilation to the Arm processor, there are two ways of analyzing program
performance:

• Measuring timing

This method involves instrumenting the code with timers and timing the execution of
each sub-function on the processor.

• Using code profiling tools

This less intrusive method uses tools, such as gprof, to measure the amount of time
spent on a function and to provide statistics on the number of times the function is
called.

X-Ref Target - Figure 8-4

Figure 8-4: Processor Code

#include <iostream>
#include “strm_test.h”

using namespace std;

int main(void)
{
 unsigned err_cnt = 0;
 data_out_t hw_result, expected =0
 strm_data strm_array[MAX_STRM_LEN];
 strm_param_t strm_len = 42;

 // Generate expected result
 for(int i = 0; i < strm_len; i++){
 expected += i + 1;
 }

 producer(strm_array,strm_len);
 consumer(&hw_result,strm_array,strm_len);

 // Test result
 if(hw_result != expected){
 cout << “!!!ERROR”;
 err_cnt++;
 }else{
 cout << “*** Test Passed”;
 }
 cout << “-expected:” << expected;
 cout << “ Got:” << hw_result << endl;
 return err_cnt;
}

Introduction to FPGA Design with Vivado HLS 74
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=75

Chapter 8: Integration of Multiple Programs
In this example, the results of gprof indicate that the producer and consumer functions are
the performance bottlenecks in the application. Therefore, the decision is made to
implement both functions in the FPGA fabric. After a function is marked for FPGA
implementation, the function ports must be analyzed to determine the most suitable
hardware interface.

Figure 8-5 shows the signature of the producer function.

The producer function includes the following ports:

• strm_out

This port is an array used for function output and is connected to the corresponding
input in the consumer function. Because both the producer and consumer functions
access this array as a sequential queue, the best hardware interface is the AXI4-Stream.

• strm_len

This function parameter is an input, which must be provided by the processor. Therefore,
this port must be mapped on an AXI4-Lite interface.

X-Ref Target - Figure 8-5

Figure 8-5: Producer Function Signature

void producer(strm_data_t strm_out[MAX_STRM_LEN],strm_param_t strm_len)
Introduction to FPGA Design with Vivado HLS 75
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=76

Chapter 8: Integration of Multiple Programs
Figure 8-6 shows the function signature for the consumer function.

The consumer function includes the following ports:

• strm_in

This array port is connected to the same array as the producer function. Therefore, this
port must be connected to an AXI4-Stream interface.

• strm_len

This function parameter serves the same purpose as in the producer function. As in the
producer function, this port is implemented as an AXI4-Lite interface.

• dout

This is an output port. Because there are no additional FPGA fabric modules in the
design, the only choice is for the value to be transferred back to the processor. The
transfer of data from the FPGA fabric directly to the processor occurs by issuing a
processor interrupt. After an interrupt is acknowledged, the processor queries its
memory space for data. The dout function parameter must be mapped into an
AXI4-Lite interface to be accessible from the processor program.

Compiling the Program in Vivado HLS

After identifying the functions to run in the FPGA fabric, the designer prepares the source
code for Vivado HLS compilation. In this example, the producer and consumer functions are
implemented as independent modules in the FPGA fabric. One compilation project results
in one module in the FPGA fabric. Therefore, in this example, the designer must run HLS
twice to generate the corresponding modules.

RECOMMENDED: When working with multiple projects or modules, it is recommended that the source
code is separated into different files. This simple technique prevents issues with one module
compilation affecting the other module in the design.

HLS compilation can be controlled using a Tool Command Language (Tcl) script file. A Tcl
script file, which is analogous to a compilation Makefile, instructs the compiler which
function to implement and FPGA device to target.

X-Ref Target - Figure 8-6

Figure 8-6: Consumer Function Signature

void strm_consumer(data_out_t *dout, strm_data_t
strm_in[MAX_STRM_LEN], strm_param_t strm_len)
Introduction to FPGA Design with Vivado HLS 76
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=77

Chapter 8: Integration of Multiple Programs
Figure 8-7 shows the Tcl script file for the HLS compilation of the producer function.

The script is divided into the following sections:

• Project setup

This section includes the source files and the name of the function to be compiled.
Guiding the Vivado HLS compiler is an iterative process of applying directives or
pragmas to the design source code. Each successive refinement of a design is called a
solution. All projects have at least one solution.

• Solution setup

This section establishes the clock frequency and device for which the software function
is compiled. If the designer is guiding the compiler through the use of directives, the
solution directives are included in this section of the script.

• Compilation

This section drives the RTL generation and packaging. The assembly of HLS programs
into a complete Zynq-7000 device application requires the use of the Vivado IP
integrator, which is a system composition tool. IP integrator requires modules to be
packed in the equivalent of a software object file.

Note: For more information on IP and IP integrator, see the Vivado Design Suite User Guide:
Designing with IP (UG896) [Ref 3] and Vivado Design Suite User Guide: Designing IP Subsystems
Using IP Integrator (UG994) [Ref 4].

X-Ref Target - Figure 8-7

Figure 8-7: Producer Function Example HLS Script File

Project Setup
open_project producer_prj
set_top producer
add_file strm_producer.cpp
add_file –tb strm_consumer.cpp
add_file –tb strm_test.cpp

Solution Setup
open_solution “solution1”
set_part {xc7z020clg484-1}
create_clock –period 5

Compilation
csynth_design
export_design –format ipxact
Introduction to FPGA Design with Vivado HLS 77
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=78

Chapter 8: Integration of Multiple Programs
The optimization of the producer and consumer functions requires pragmas to determine
the parallelization of the generated modules and its interfaces. Figure 8-8 shows the
optimized code for the producer function.

The producer function is parallelized by the pipeline pragma. This creates an
implementation in which the start time of the i and i+1 iteration is separated by one clock
cycle. In addition to the pipeline pragmas, the code shows the use of interface pragmas.

Interface pragmas define how the module is connected in the FPGA fabric. The definition
process is separated into interface behavior and interface mapping. In this example, the
following occurs:

1. The ap_fifo interface pragma for the strm_out port transforms an array into a
hardware FIFO.

2. The physical FIFO is mapped into an AXI4-Stream interface with the resource pragma.

3. The strm_len function parameter is first assigned to an ap_none interface behavior
and then mapped into an AXI4-Lite interface.

Note: The AXI4-Lite interface handles the correct sequencing of the strm_len value from the
processor. Therefore, the HLS-generated module does not need to enforce additional
synchronization on this port.

X-Ref Target - Figure 8-8

Figure 8-8: Optimized Version of Producer Function

#include “strm_test.h”

void producer(strm_data_t strm_out[MAX_STRM_LEN],strm_param_t strm_len)
{
//Interface Behavior
#pragma HLS INTERFACE ap_none port=strm_len
#pragma HLS INTERFACE ap_fifo port=strm_out

//Interface Mapping
#pragma HLS RESOURCE variable=strm_out core=AXIS metadata=“-bus_bundle OUTPUT_STREAM”
#pragma HLS RESOURCE variable=strm_len core=AXIS4LiteS metadata=“-bus_bundle CONTROL_BUS”

for(int i = 0; i < strm_len; i++){
#pragma HLS PIPELINE
 strm_out[i] = i + 1;
 }
}

Introduction to FPGA Design with Vivado HLS 78
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=79

Chapter 8: Integration of Multiple Programs
Figure 8-9 shows the code for the consumer function. This function has the same
optimizations and pragmas as the producer function.

Composing the System in Vivado IP Integrator

Vivado IP integrator is a Xilinx FPGA design tool for system composition. One use of this
tool is to take the blocks generated by the HLS compiler and connect them into the
processing platform that executes the user application. In software development terms, IP
integrator is analogous to a linker that combines all program objects into a single bitstream.
A bitstream is the binary file used to program the FPGA fabric.

X-Ref Target - Figure 8-9

Figure 8-9: Optimized Version of Consumer Function

#include “strm_test.h”

void consumer(data_out_t *dout, strm_data_t strm_in[MAX_STRM_LEN],
 strm_param_t strm_len)
{
//Interface Behavior
#pragma HLS INTERFACE ap_none port=dout
#pragma HLS INTERFACE ap_none port=strm_len
#pragma HLS INTERFACE ap_fifo port=strm_in

//Interface Mapping
#pragma HLS RESOURCE variable=strm_in core=AXIS metadata=“-bus_bundle OUTPUT_STREAM”
#pragma HLS RESOURCE variable=strm_len core=AXIS4LiteS metadata=“-bus_bundle CONTROL_BUS”
#pragma HLS RESOURCE variable=dout core=AXIS4LiteS metadata=“-bus_bundle CONTROL_BUS”

data_out_t accum = 0;

 for(int i = 0; i < strm_len; i++){
#pragma HLS PIPELINE
 accum += strm_in[i];
 }
 *dout = accum;
}

Introduction to FPGA Design with Vivado HLS 79
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=80

Chapter 8: Integration of Multiple Programs
Connecting Processor Code and FPGA Fabric Functions

After the FPGA fabric programming binary is created in IP integrator, the designer must
create the software that runs on the processor. The purpose of this software is to initialize
the FPGA fabric functions, launch execution, and receive results from the fabric. For the
overall application to be functionally equivalent to the original processor code, each
function running in the FPGA fabric requires the following functionality in the code running
on the Arm Cortex-A9 processor:

• Address mapping

• Initialization

• Start function

• Interrupt service routine (ISR)

• Interrupt registration in the processor exception table

• New main function to run the system

This functionality applies to both the producer and consumer functions, which are running
in the FPGA fabric. Therefore, only the code for the producer function is shown in
Figure 8-10.

This code shows the configuration of the producer hardware module in the processor
program space. The first parameter states which instance of the producer function is being
accessed in the fabric. Because there is only one instantiation of producer in the fabric, the
value for this parameter is 0. The base address definition is provided by the system
composition step in IP integrator. This address represents the location of the memory
mapped accelerator within the memory space that is accessible from the processor.

X-Ref Target - Figure 8-10

Figure 8-10: Configuration of a Hardware Function in Processor Program Space

XStrm_producer_Config producer_config={
 0,
 XPAR_STRM_PRODUCER_TOP_0_S_AXI_CONTROL_BUS_BASEADDR
};
Introduction to FPGA Design with Vivado HLS 80
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=81

Chapter 8: Integration of Multiple Programs
Figure 8-11 shows the initialization function required to make the producer hardware
module available to the program running on the processor.

Figure 8-12 sets up the producer hardware module to begin task execution. This function is
responsible for setting the module interrupts into a known state and starting task
execution.

The ISR shown in Figure 8-13 describes how the processor reacts to an interrupt from the
producer function in the FPGA fabric. The contents of an ISR are application specific. This
code shows the minimum ISR required to properly interact with an HLS-generated module
in the Zynq-7000 device.

X-Ref Target - Figure 8-11

Figure 8-11: Initialization of a Hardware Function

X-Ref Target - Figure 8-12

Figure 8-12: Hardware Function Start

X-Ref Target - Figure 8-13

Figure 8-13: Interrupt Service Routine

int ProducerSetup(){
 return XStrm_producer_Initialize(&producer,&producer_config);
}

void ProducerStart(void *InstancePtr){
 XStrm_producer *pProducer = (XStrm_producer *)InstancePtr;
 XStrm_producer_InterruptEnable(pProducer,1);
 XStrm_producer_InterruptGlobalEnable(pProducer);
 XStrm_producer_Start(pProducer);
}

void Producer(void *InstancePtr){
 XStrm_producer *pProducer = (XStrm_producer *)InstancePtr;

 //Disable the global interrupt from the producer
 XStrm_producer_InterruptGlobalDisable(pProducer);
 XStrm_producer_InterruptDisable(pProducer,0xffffffff);

 //clear the local interrupt
 XStrm_producer_InterruptClear(pProducer,1);

 ProducerDone = 1;
 //restart the core if it should be run again
 if(RunProducer){
 ProducerStart(pProducer);
 }
}

Introduction to FPGA Design with Vivado HLS 81
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=82

Chapter 8: Integration of Multiple Programs
All interrupt service routines must be registered in the processor exception table. After the
processor interrupt controller is initialized, the main program can start executing the user
application. Figure 8-14 shows how to configure the exception table for the Zynq-7000
device.

X-Ref Target - Figure 8-14

Figure 8-14: Configuration of the Processor Exception Table

int SetupInterrupt()
{
 //This function sets up the interrupt on the ARM
 int result;
 XScuGic_Config *pCfg =
 XScuGic_LookupConfig(XPAR_SCUGIC_SINGLE_DEVICE_ID);
 if(pCfg == NULL){
 print(“Interrupt Configuration Lookup Failed\n\r”);
 return XST_FAILURE;
 }
 result = XScuGic_CfgInitialize(&ScuGic,pCfg,pCfg->CpuBaseAddress);
 if(result != XST_SUCCESS){
 return result;
 }
 //self test
 result = XScuGic_SelfTest(&ScuGic);
 if(result != XST_SUCCESS){
 return result;
 }
 // Initialize the exception handler
 Xil_ExceptionInit();
 //Register the exception handler
 Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,(Xil_ExceptionHandler)XScuGic_InterruptHandler,&ScuGic);
 //Enable the exception handler
 Xil_ExceptionEnable();
 //Connect the Producer ISR to the exception table
 result = XScuGic_Connect(&ScuGic,XPAR_FABRIC_STRM_PRODUCER_TOP_0_INTERRUPT_INT,
 (Xil_InterruptHandler)ProducerIsr,&producer);
 if(result != XST_SUCCESS){
 return result;
 }
 //Connect the Consumer ISR to the exception table
 result = XScuGic_Connect(&ScuGic,XPAR_FABRIC_STRM_CONSUMER_TOP_0_INTERRUPT_INTR,
 (Xil_InterruptHandler)ConsumerIsr,&consumer);
 if(result != XST_SUCCESS){
 return result;
 }
 //Enable the interrupts for the Producer and Consumer
 XScuGic_Enable(&ScuGic,XPAR_FABRIC_STRM_PRODUCER_TOP_0_INTERRUPT_INTR);
 XScuGic_Enable(&ScuGic,XPAR_FABRIC_STRM_CONSUMER_TOP_0_INTERRUPT_INTR);
 return XST_SUCCESS;
}

Introduction to FPGA Design with Vivado HLS 82
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=83

Chapter 8: Integration of Multiple Programs
Figure 8-15 shows the new main program for the application. After the hardware is set up
and the processor environment is configured, there is no computation left on the processor
for this example. All the computation was moved into the FPGA fabric through the use of
HLS compilation. The purpose of the processor in this case is to launch a task on each
hardware module and gather the results after the modules complete a task.

X-Ref Target - Figure 8-15

Figure 8-15: Processor Main Function

int main()
{
 Init_platform();

 print(“Producer Consumer Example\n\r”);
 int length;
 int status;
 int result;
 length = 50;
 printf(“Length of stream = %d\n\r”,length);

 status = ProducerSetup();
 if(status != XST_SUCCESS){
 print(“Producer setup failed\n\r”);
 }
 status = ConsumerSetup();
 if(status != XST_SUCCESS){
 print(“Consumer setup failed\n\r”);
 }
 //Setup the interrupt
 status = SetupInterrupt();
 if(status != XST_SUCCESS){
 print(“Interrupt setup failed\n\r”);
 }

 XStrm_consumer_SetStrm_len(&consumer, length);
 XStrm_producer_Set_Strm_len(&producer,length);

 ProducerStart(&producer);
 ConsumerStart(&consumer);

 while(!ProducerDone) print(“waiting for producer to finish\n\r”);
 while(!ConsumerResult) print(“waiting for consumer to finish\n\r”);

 result = XStrm_consumer_GetDout(&consumer);
 printf(“Consumer result = %d\n\r”,result);
 print(“Finished\n\r”);

 cleanup_platform();

 return 0;
}

Introduction to FPGA Design with Vivado HLS 83
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=84

Chapter 9

Verification of a Complete Application

Overview
In FPGA design, a complete application refers to a hardware system that implements the
functionality captured by the software representation of a design. There are two main
categories of systems that can be built on an FPGA using the Vivado® HLS compiler:

• Standalone compute systems

• Processor-based systems

Standalone Compute Systems
The standalone compute system is an FPGA implementation created by one or more
HLS-generated modules connected together to implement a software application. In these
types of systems, the configuration of the algorithm is fixed and loaded during device
configuration. The modules generated by the HLS compiler are connected to external FPGA
pins for data transmit and receive transactions. This is the easiest kind of system to verify.
The verification of a standalone system is divided into the following stages:

• Module verification

• Connectivity verification

• Application verification

• Device validation

Module Verification
Module verification of an HLS-generated block is covered in detail in Chapter 7, Software
Verification and Vivado HLS. After the block is fully verified for functional correctness in
both software and co-simulation, the designer must test the block for in system error
tolerance.
Introduction to FPGA Design with Vivado HLS 84
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=85

Chapter 9: Verification of a Complete Application
Both software simulation and co-simulation are focused on testing the functional
correctness of an algorithm in isolation. That is, the algorithm and compiled module are
tested to ensure correct functionality when all inputs and outputs are handled in an ideal
manner. This thorough level of testing helps to ensure correctness after data is supplied to
the module. It also helps to reduce the verification burden of later stages by eliminating the
internal processing core of a module as a possible source of error. The only module-level
issue that is not handled by this methodology is verification that the module can recover
fully from incorrect handshaking at its interfaces.

In-system testing tests how the HLS-generated module reacts to incorrect toggling of its
input and output ports. The purpose of this testing is to eliminate I/O behavior as an error
source that can crash or otherwise adversely affect the module under test. The types of
improper use cases tested in this methodology are:

• Erratic clock signal toggling

• Reset operation and random reset pulsing

• Input ports receiving data at different rates

• Output ports being sampled at different rates

• Interface protocol violations

These tests, which are examples of system-level behavior, ensure that the HLS-generated
module functions as expected under all circumstances. The amount of testing required at
this stage depends on the types of interfaces and the integration methodology. By using
HLS default settings to generate AXI-compliant interfaces, the designer can avoid writing
an exhaustive test bench of incorrect system-level behavior. AXI-compliant interfaces are
fully tested and verified by the developers of the HLS compiler.

Connectivity Verification
Connectivity verification is a sequence of tests to check that the modules in an application
are properly connected to each other. As with module verification, the amount of testing
required depends on the system integration methodology. As discussed in Chapter 8,
Integration of Multiple Programs, applications can be assembled either manually or with
the assistance of FPGA design tools.

FPGA design tool assistance is provided in both the Xilinx® System Generator and Vivado IP
integrator design flows. These graphical module connection tools handle all the aspects
related to module connection. As part of these flows, each tool checks the port types and
protocol compliance of each module in the application. If each module has undergone
module verification, there is no need for additional user-directed connectivity testing with
either of these flows.
Introduction to FPGA Design with Vivado HLS 85
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=86

Chapter 9: Verification of a Complete Application
The manual integration flow requires the user to write an application top-level module in
RTL and manually connect the RTL ports of every module that makes up an application. This
is the most error-prone flow and must be verified. The amount of testing required can be
decreased by using HLS compiler defaults and generating AXI interfaces for every module
port.

For systems built around AXI interfaces, the connectivity can be verified through the use of
a bus functional model (BFM). The BFM provides the Xilinx-verified behavior of AXI buses
and point-to-point connections. These models can be used for traffic generators, which
help prove the correct connection of HLS-generated modules as part of an RTL simulation.

IMPORTANT: It is important to remember that the purpose of this simulation is only to check
connectivity and the proper flow of data through the system. The connectivity verification step does not
verify the functional correctness of the application.

Application Verification
Application verification is the final step before running the application on the FPGA device.
The previous steps in the flow focused on checking the quality of the individual algorithms
that compose an application as well as checking that everything is connected properly.
Application verification focuses on checking that the original software model matches the
results of the FPGA implementation. If the application is composed of a single
HLS-generated module, this stage is the same as module verification. In cases where the
application is composed of two or more HLS-generated modules, the verification process
starts with the original software model.

The designer must extract application input and output test vectors from the software
model to be used in an RTL simulation. Because the construction of the hardware
implementation is verified in multiple stages, the application verification does not need to
be an exhaustive simulation. The simulation can run as many test vectors as needed for the
designer to feel confident in the FPGA implementation.

Device Validation
After an application is assembled in RTL using either automated or manual integration
flows, the design goes through an additional compilation stage to generate the binary or
bitstream required to program the FPGA. In the terminology of FPGA design, the
compilation of RTL into a bitstream is referred to as logic synthesis, implementation, and
bitstream generation. After the bitstream is generated, the FPGA device can be
programmed. The application is validated after the hardware runs correctly for an amount
of time specified by the designer.
Introduction to FPGA Design with Vivado HLS 86
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=87

Chapter 9: Verification of a Complete Application
Processor-Based Systems
For the module and connectivity verification stages, the verification flow for a
processor-based system is the same as the standalone system. The major difference is that
a portion of the application is running on the processor. In the Zynq®-7000 SoC, this means
that part of the application runs on the embedded Arm® Cortex™-A9 processors and part
is compiled by HLS to execute on the FPGA fabric. This partitioning presents a verification
challenge that can be addressed through the use of the following technologies:

• Hardware in the loop (HIL) verification

• Virtual platform (VP) verification

Hardware in the Loop Verification
HIL verification is a verification methodology in which the simulation of part of the system
under test is executed in the FPGA fabric. In the Zynq-7000 SoC, the application code
targeted for the processor is executed on the actual Arm Cortex-A9 processor in the device.
The code compiled with HLS is executed in an RTL simulation.

Figure 9-1 shows an overview of HIL verification for the Zynq-7000 device. The system in
this figure is an experimental setup that includes the ZC702 evaluation board, which is a
currently available commercial board, and the Vivado simulator. This figure also introduces
the concept of a processing system (PS) and a programmable logic (PL) unit. The PS refers
to the dual Arm Cortex-A9 processor, which is also called the processing subsystem. The PL
refers to the FPGA logic inside the Zynq-7000 device, which is the portion of the device
onto which the HLS-generated modules are mapped.

TIP: HIL verification requires a board to gain access to the processor, and this technology works on any
Zynq-7000 SoC board.
Introduction to FPGA Design with Vivado HLS 87
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=88

Chapter 9: Verification of a Complete Application
The main advantages of HIL verification versus verification are:

• No simulation inconsistencies between a processor model and the actual processor

• Code running on the processor is executed at the speed of the FPGA device

• Full visibility into how each generated module operates through RTL simulation

When using HIL verification, it is important to remember the performance characteristics of
this technology. Although the processor code runs in the actual hardware, the FPGA fabric
is fully simulated on the designer’s workstation. As discussed in Chapter 8, Integration of
Multiple Programs, RTL simulation is a relatively slow process. Therefore, HIL verification is
only recommended for verifying the major interactions between the processor and the
FPGA fabric, not every use case in the application. The key application behaviors to check
with HIL verification are:

• Vivado HLS driver integration into the processor code

• Writing configuration parameters from the PS to the PL

• Interrupt from the PL to the PS

X-Ref Target - Figure 9-1

Figure 9-1: HIL Verification Overview for the Zynq-7000 SoC

Top-Level Design

PS Running in Hardware

PL Simulated in Vivado Simulator

ZC702 Board
X13495
Introduction to FPGA Design with Vivado HLS 88
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=89

Chapter 9: Verification of a Complete Application
Along with the RTL implementation of a software algorithm, the Vivado HLS compiler
generates the software drivers needed for the processor to communicate with the
generated hardware modules. The driver from Vivado HLS handles accelerator start and
stop, configuration, and data transfer. This driver is available for both Linux and standalone
software applications.

Note: A standalone software application is a system in which the processor only executes a single
program and does not require OS support.

Virtual Platform Verification
Virtual platform technology is an established method of overlapping software and
hardware development and is available for the Zynq-7000 SoC. A virtual platform is a
software simulation of both the application and the hardware platform on which it runs. The
models used for the PL portion of the design can be in C, C++, SystemC, or RTL. This
simulation platform can be used as a proxy for the other recommended verification stages
with varying degrees of fidelity to the hardware implementation.

In the fastest use case of the virtual platform, the application modules targeted to the PL
are simulated from the C/C++ source code provided to the Vivado HLS compiler. This setup
results in a functionally correct simulation that allows the designer to test the algorithm for
correct computation. As modules are optimized and compiled with Vivado HLS, the
generated RTL can replace the software version of the module to enable connectivity
testing and timing driver simulation.

IMPORTANT: It is important to remember that adding RTL modules impacts the runtime on the virtual
platform and slows down execution.

Device Validation
The purpose of device validation is to check all the application use cases in which the
processor interacts with the FPGA fabric. As in the case of standalone execution, this
process involves running the complete application for a certain amount of time on the
Zynq-7000 SoC. The purpose of this test is to check all the application corner cases with
regard to the interaction between the PS and PL portions of the design.
Introduction to FPGA Design with Vivado HLS 89
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=90

Appendix A

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado® IDE, select Help > Documentation and Tutorials.

• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.
Introduction to FPGA Design with Vivado HLS 90
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=91

Appendix A: Additional Resources and Legal Notices
References
1. Vivado® Design Suite User Guide: High-Level Synthesis (UG902)

2. AXI Reference Guide (UG761)

3. Vivado Design Suite User Guide: Designing with IP (UG896)

4. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

5. Vivado Design Suite Documentation
(www.xilinx.com/support/index.html/content/xilinx/en/supportNav/design_tools/
vivado_design_suite.html)

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty,
please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products
in such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2013-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.
Introduction to FPGA Design with Vivado HLS 91
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug761_axi_reference_guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;t=vivado+docs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;t=vivado+docs
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=92

	Introduction to FPGA Design with Vivado High-Level Synthesis
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Overview
	Programming Model
	Guide Organization
	What is an FPGA?
	Basic Concepts of Hardware Design
	Vivado High-Level Synthesis
	Computation-Centric Algorithms
	Control-Centric Algorithms
	Software Verification and Vivado HLS
	Integration of Multiple Programs
	Verification of a Complete Application

	Ch. 2: What is an FPGA?
	Overview
	FPGA Architecture
	LUT
	Flip-Flop
	DSP Block
	Storage Elements

	FPGA Parallelism Versus Processor Architectures
	Program Execution on a Processor
	Program Execution on an FPGA
	Scheduling
	Pipelining
	Dataflow

	Ch. 3: Basic Concepts of Hardware Design
	Overview
	Clock Frequency
	Latency and Pipelining
	Throughput
	Memory Architecture and Layout
	Registers
	Shift Register
	FIFO
	BRAM

	Ch. 4: Vivado High-Level Synthesis
	Overview
	Operations
	Conditional Statements
	Loops
	Functions
	Dynamic Memory Allocation
	Pointers

	Ch. 5: Computation-Centric Algorithms
	Overview
	Data Rate Optimization

	Ch. 6: Control-Centric Algorithms
	Overview
	Expressing Control in C/C++
	Loops
	Conditional Statements
	Case Statements
	Control System Classification

	UDP Packet Processing

	Ch. 7: Software Verification and Vivado HLS
	Overview
	Software Test Bench
	Code Coverage
	Uninitialized Variables
	Out-of-Bounds Memory Access
	Co-Simulation
	When C/C++ Verification Is Not Possible

	Ch. 8: Integration of Multiple Programs
	Overview
	AXI
	Memory Mapped Slave
	Memory Mapped Master
	Direct Point-to-Point Stream

	Design Example: Application Running on a Zynq-7000 SoC
	Analyzing and Partitioning the Processor Code
	Compiling the Program in Vivado HLS
	Composing the System in Vivado IP Integrator
	Connecting Processor Code and FPGA Fabric Functions

	Ch. 9: Verification of a Complete Application
	Overview
	Standalone Compute Systems
	Module Verification
	Connectivity Verification
	Application Verification
	Device Validation

	Processor-Based Systems
	Hardware in the Loop Verification
	Virtual Platform Verification
	Device Validation

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Please Read: Important Legal Notices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /All
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

